Scanning tunneling spectroscopy (STS) enables the local, energy-resolved investigation of a samples surface density of states (DOS) by measuring the differential conductance (dI/dV) being approximately proportional to the DOS. It is popular to examine the electronic structure of elementary samples by acquiring dI/dV maps under constant current conditions. Here we demonstrate the intricacy of STS mapping of samples exhibiting a strong corrugation originating from electronic density and local work function changes.
View Article and Find Full Text PDFThe assembly and dynamics of a hierarchical, bimolecular network of sexiphenyl dicarbonitrile and N,N'-diphenyl oxalic amide molecules on the Ag(111) surface are studied by scanning tunneling microscopy at controlled temperature. The network formation is governed by a two-step protocol involving hierarchic interactions, including a novel carbonitrile-oxalic amide bonding motif. For temperatures exceeding ~70 K, more weakly bound sexiphenyl dicarbonitrile molecules carry out one-dimensional diffusion guided by the more stable substructure of the network held together by the carbonitrile-oxalic amide bonding motif.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2010
The confinement of molecular species in nanoscale environments leads to intriguing dynamic phenomena. Notably, the organization and rotational motions of individual molecules were controlled by carefully designed, fully supramolecular host architectures. Here we use an open 2D coordination network on a smooth metal surface to steer the self-assembly of discrete trimeric guest units, identified as noncovalently bound dynamers.
View Article and Find Full Text PDFThe confinement of surface-state electrons by a complex supramolecular network is studied with low-temperature scanning tunneling microscopy and rationalized by electronic structure calculations using a boundary element method. We focus on the self-assembly of dicarbonitrile-sexiphenyl molecules on Ag(111) creating an open kagomé topology tessellating the surface into pores with different size and symmetry. This superlattice imposes a distinct surface electronic structure modulation, as observed by tunneling spectroscopy and thus acts as a dichotomous array of quantum corrals.
View Article and Find Full Text PDF