Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.
View Article and Find Full Text PDFAggregates prepared under fully destabilized conditions by the action of Brownian motion were exposed to an extensional flow generated at the entrance of a sudden contraction. Two noninvasive techniques were used to monitor their breakup process [i.e.
View Article and Find Full Text PDFCardiovascular diseases can lead to abnormal blood flows, some of which are linked to hemolysis and thrombus formation. Abnormal turbulent flows of blood in the vessels with stenosis create strong shear stresses on blood elements and may cause blood cell destruction or platelet activation. We implemented a Lagrangian (following the fluid elements) measurement technique of three dimensional particle tracking velocimetry that provides insight on the evolution of viscous and turbulent stresses along blood element trajectories.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2014
A three-dimensional (3-D) pulsatile aortic flow in a human ascending aorta is studied to investigate the effect of the aortic stiffness on the flow field and turbulent fluctuating velocities in the ascending aorta. A nonintrusive optical measurement technique, 3-D particle tracking velocimetry (3D-PTV), has been applied to anatomically accurate phantoms under clinically realistic conditions. A compliant silicon phantom was used to mimic the healthy aorta, and a rigid model was used to imitate the pathological case that appears in aortas for example as a result of aging.
View Article and Find Full Text PDFWe present an optimal real-time control approach for the management of drinking water well fields. The methodology is applied to the Hardhof field in the city of Zurich, Switzerland, which is threatened by diffuse pollution. The risk of attracting pollutants is higher if the pumping rate is increased and can be reduced by increasing artificial recharge (AR) or by adaptive allocation of the AR.
View Article and Find Full Text PDFA coupled surface water-groundwater model of the Okavango Delta has been built based on the United States Geological Survey software MODFLOW 2000 including the SFR2 package for stream-flow routing. It will provide a new tool for evaluating water management and climate change scenarios. The delta's size and limited accessibility make direct, on the ground data acquisition difficult.
View Article and Find Full Text PDFThis study investigated miscible fingering phenomena in a saturated porous medium due solely to fluid density differences. The objective was to determine dissolved salt concentrations in the porous medium and, thus, local fluid density with high temporal resolution and covering substantial volume. A magnetic resonance imaging method, which can achieve this goal by adding Cu(II)SO(4) to salt solutions, has been developed.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2006
The Lagrangian evolution of infinitesimal material lines is investigated experimentally through three dimensional particle tracking velocimetry (3D-PTV) in quasihomogeneous turbulence with the Taylor microscale Reynolds number Re(lambda)=50. Through 3D-PTV we access the full tensor of velocity derivatives du(i)/dx(j) along particle trajectories, which is necessary to monitor the Lagrangian evolution of infinitesimal material lines l. By integrating the effect on l of (i) the tensor du(i)/dx(j), (ii) its symmetric part s(ij), (iii) its antisymmetric part r(ij), along particle trajectories, we study the evolution of three sets of material lines driven by a genuine turbulent flow, by "strain only," or by "vorticity only," respectively.
View Article and Find Full Text PDFHydraulically equivalent fractures may show striking differences when a gas-migration experiment is performed because of the different correlations between transmissivity, pore volume and entry pressure. We numerically simulate gas migration between injection and extraction boreholes in a parallel plate fracture with a heterogeneous fault gouge, in a rough-walled fracture filled with homogeneous material, and in a rough-walled empty fracture. The parallel plate model and the empty model clearly show the existence of preferential paths; for high variance of the transmissivity field, gas flow takes place only in few discrete channels separated by water-saturated regions.
View Article and Find Full Text PDFA model was developed simulating reactive transport in groundwater including bioclogging. Results from a bioclogging experiment in a flow cell with a two-dimensional flow field were used as a data base to verify the simulation results of the model. Simulations were performed using three different hydraulic conductivity vs.
View Article and Find Full Text PDFJ Contam Hydrol
December 2003
The relevant velocity that describes transport phenomena in a porous medium is the pore velocity. For this reason, one needs not only to describe the variability of transmissivity, which fully determines the Darcy velocity field for given source terms and boundary conditions, but also any variability of the pore volume. We demonstrate that hydraulically equivalent media with exactly the same transmissivity field can produce dramatic differences in the displacement of a solute if they have different pore volume distributions.
View Article and Find Full Text PDFBacterial growth and its interaction with water flow was investigated in a two-dimensional flow field in a saturated porous medium. A flow cell (56 x 44 x 1 cm) was filled with glass beads and operated under a continuous flow of a mineral medium containing nitrate as electron acceptor. A glucose solution was injected through an injection port, simulating a point source contamination.
View Article and Find Full Text PDFJ Environ Qual
September 2002
Porosity and permeability of porous and fractured geological media decrease with the exploitation of formation fluids such as petroleum, natural gas, or ground water. This may result in ground subsidence and a decrease of recovery of petroleum, natural gas, or ground water. Therefore, an evaluation of the behavior of permeability and porosity under formation fluid pressure changes is important to petroleum and ground water industries.
View Article and Find Full Text PDFJ Environ Qual
September 2002
Nuclear magnetic resonance imaging (NMRI) methods for visualization of fluid flow and transport in porous media are reviewed in this paper. They are illustrated with experiments showing applications of velocity imaging, NMRI measurements of multiphase flow, and NMRI measurements of density flow. The latter two are compared with numerical simulations.
View Article and Find Full Text PDF