Publications by authors named "Wolfgang Ganglberger"

Study Objectives: This study aimed to (1) improve sleep staging accuracy through transfer learning (TL), to achieve or exceed human inter-expert agreement and (2) introduce a scorability model to assess the quality and trustworthiness of automated sleep staging.

Methods: A deep neural network (base model) was trained on a large multi-site polysomnography (PSG) dataset from the United States. TL was used to calibrate the model to a reduced montage and limited samples from the Korean Genome and Epidemiology Study (KoGES) dataset.

View Article and Find Full Text PDF

The ability to assess sleep at home, capture sleep stages, and detect the occurrence of apnea (without on-body sensors) simply by analyzing the radio waves bouncing off people's bodies while they sleep is quite powerful. Such a capability would allow for longitudinal data collection in patients' homes, informing our understanding of sleep and its interaction with various diseases and their therapeutic responses, both in clinical trials and routine care. In this article, we develop an advanced machine learning algorithm for passively monitoring sleep and nocturnal breathing from radio waves reflected off people while asleep.

View Article and Find Full Text PDF

Backgrounds: Sleep disturbances are prevalent among elderly individuals. While polysomnography (PSG) serves as the gold standard for sleep monitoring, its extensive setup and data analysis procedures impose significant costs and time constraints, thereby restricting the long-term application within the general public. Our laboratory introduced an innovative biomarker, utilizing artificial intelligence algorithms applied to PSG data to estimate brain age (BA), a metric validated in cohorts with cognitive impairments.

View Article and Find Full Text PDF

Background And Objectives: Patterns of electrical activity in the brain (EEG) during sleep are sensitive to various health conditions even at subclinical stages. The objective of this study was to estimate sleep EEG-predicted incidence of future neurologic, cardiovascular, psychiatric, and mortality outcomes.

Methods: This is a retrospective cohort study with 2 data sets.

View Article and Find Full Text PDF

Study Objectives: To use relatively noisy routinely collected clinical data (brain magnetic resonance imaging (MRI) data, clinical polysomnography (PSG) recordings, and neuropsychological testing), to investigate hypothesis-driven and data-driven relationships between brain physiology, structure, and cognition.

Methods: We analyzed data from patients with clinical PSG, brain MRI, and neuropsychological evaluations. SynthSeg, a neural network-based tool, provided high-quality segmentations despite noise.

View Article and Find Full Text PDF

Sleep electroencephalogram (EEG) signals likely encode brain health information that may identify individuals at high risk for age-related brain diseases. Here, we evaluate the correlation of a previously proposed brain age biomarker, the "brain age index" (BAI), with cognitive test scores and use machine learning to develop and validate a series of new sleep EEG-based indices, termed "sleep cognitive indices" (SCIs), that are directly optimized to correlate with specific cognitive scores. Three overarching cognitive processes were examined: total, fluid (a measure of cognitive processes involved in reasoning-based problem solving and susceptible to aging and neuropathology), and crystallized cognition (a measure of cognitive processes involved in applying acquired knowledge toward problem-solving).

View Article and Find Full Text PDF

Intensive care units (ICUs) may disrupt sleep. Quantitative ICU studies of concurrent and continuous sound and light levels and timings remain sparse in part due to the lack of ICU equipment that monitors sound and light. Here, we describe sound and light levels across three adult ICUs in a large urban United States tertiary care hospital using a novel sensor.

View Article and Find Full Text PDF

Background: Before integrating new machine learning (ML) into clinical practice, algorithms must undergo validation. Validation studies require sample size estimates. Unlike hypothesis testing studies seeking a -value, the goal of validating predictive models is obtaining estimates of model performance.

View Article and Find Full Text PDF

To measure sleep in the intensive care unit (ICU), full polysomnography is impractical, while activity monitoring and subjective assessments are severely confounded. However, sleep is an intensely networked state, and reflected in numerous signals. Here, we explore the feasibility of estimating conventional sleep indices in the ICU with heart rate variability (HRV) and respiration signals using artificial intelligence methods We used deep learning models to stage sleep with HRV (through electrocardiogram) and respiratory effort (through a wearable belt) signals in critically ill adult patients admitted to surgical and medical ICUs, and in age and sex-matched sleep laboratory patients We studied 102 adult patients in the ICU across multiple days and nights, and 220 patients in a clinical sleep laboratory.

View Article and Find Full Text PDF

Both sleep and wake encephalograms (EEG) change over the lifespan. While prior studies have characterized age-related changes in the EEG, the datasets span a particular age group, or focused on sleep and wake macrostructure rather than the microstructure. Here, we present sex-stratified data from 3372 community-based or clinic-based otherwise neurologically and psychiatrically healthy participants ranging from 11 days to 80 years of age.

View Article and Find Full Text PDF
Article Synopsis
  • Dementia is increasingly common among the elderly but is often underdiagnosed; early detection through sleep patterns could help improve management of the disease.
  • The study analyzed sleep data from over 8,000 participants, classifying them into dementia, mild cognitive impairment, or cognitively normal groups using various predictive models.
  • Results showed that the models could effectively differentiate between dementia and normal cognition, highlighting the potential of sleep EEGs for routine dementia screenings.
View Article and Find Full Text PDF

Purpose: Sleep-disordered breathing may be induced by, exacerbate, or complicate recovery from critical illness. Disordered breathing during sleep, which itself is often fragmented, can go unrecognized in the intensive care unit (ICU). The objective of this study was to investigate the prevalence, severity, and risk factors of sleep-disordered breathing in ICU patients using a single respiratory belt and oxygen saturation signals.

View Article and Find Full Text PDF

Objective: The purpose of this study was to estimate the time to recovery of command-following and associations between hypoxemia with time to recovery of command-following.

Methods: In this multicenter, retrospective, cohort study during the initial surge of the United States' pandemic (March-July 2020) we estimate the time from intubation to recovery of command-following, using Kaplan Meier cumulative-incidence curves and Cox proportional hazard models. Patients were included if they were admitted to 1 of 3 hospitals because of severe coronavirus disease 2019 (COVID-19), required endotracheal intubation for at least 7 days, and experienced impairment of consciousness (Glasgow Coma Scale motor score <6).

View Article and Find Full Text PDF

Study Objectives: Alterations in sleep spindles have been linked to cognitive impairment. This finding has contributed to a growing interest in identifying sleep-based biomarkers of cognition and neurodegeneration, including sleep spindles. However, flexibility surrounding spindle definitions and algorithm parameter settings present a methodological challenge.

View Article and Find Full Text PDF

Objective: Automatic detection and analysis of respiratory events in sleep using a single respiratoryeffort belt and deep learning.

Methods: Using 9,656 polysomnography recordings from the Massachusetts General Hospital (MGH), we trained a neural network (WaveNet) to detect obstructive apnea, central apnea, hypopnea and respiratory-effort related arousals. Performance evaluation included event-based analysis and apnea-hypopnea index (AHI) stratification.

View Article and Find Full Text PDF

Background: Robust prediction of survival can facilitate clinical decision-making and patient counselling. Non-Caucasian males are underrepresented in most prostate cancer databases. We evaluated the variation in performance of a machine learning (ML) algorithm trained to predict survival after radical prostatectomy in race subgroups.

View Article and Find Full Text PDF

Purpose: Robust prediction of progression on active surveillance (AS) for prostate cancer can allow for risk-adapted protocols. To date, models predicting progression on AS have invariably used traditional statistical approaches. We sought to evaluate whether a machine learning (ML) approach could improve prediction of progression on AS.

View Article and Find Full Text PDF

Objective: Sleep-related respiratory abnormalities are typically detected using polysomnography. There is a need in general medicine and critical care for a more convenient method to detect sleep apnea automatically from a simple, easy-to-wear device. The objective was to detect abnormal respiration and estimate the Apnea-Hypopnea Index (AHI) automatically with a wearable respiratory device with and without SpO signals using a large (n = 412) dataset serving as ground truth.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding individual brain structure and dynamics is crucial for interpreting brain function in both healthy and diseased states, moving beyond average measurements from groups.
  • The studies focused on MRI-guided transcranial magnetic stimulation (TMS) to analyze individual brain responses, their reproducibility, and differences between various brain regions.
  • Results showed that while the patterns of brain response vary widely across different individuals, they are consistently reproducible within the same person, allowing for accurate individual identification based on TMS effects.
View Article and Find Full Text PDF

Background: We sought to develop an automatable score to predict hospitalization, critical illness, or death for patients at risk for coronavirus disease 2019 (COVID-19) presenting for urgent care.

Methods: We developed the COVID-19 Acuity Score (CoVA) based on a single-center study of adult outpatients seen in respiratory illness clinics or the emergency department. Data were extracted from the Partners Enterprise Data Warehouse, and split into development (n = 9381, 7 March-2 May) and prospective (n = 2205, 3-14 May) cohorts.

View Article and Find Full Text PDF

Study Objectives: Sleep-disordered breathing is a significant risk factor for cardiometabolic and neurodegenerative diseases. High loop gain (HLG) is a driving mechanism of central sleep apnea or periodic breathing. This study presents a computational approach that identifies "expressed/manifest" HLG via a cyclical self-similarity feature in effort-based respiration signals.

View Article and Find Full Text PDF

Background: We sought to develop an automatable score to predict hospitalization, critical illness, or death in patients at risk for COVID-19 presenting for urgent care during the Massachusetts outbreak.

Methods: Single-center study of adult outpatients seen in respiratory illness clinics (RICs) or the emergency department (ED), including development (n = 9381, March 7-May 2) and prospective (n = 2205, May 3-14) cohorts. Data was queried from Partners Enterprise Data Warehouse.

View Article and Find Full Text PDF

Study Objectives: Sleep is reflected not only in the electroencephalogram but also in heart rhythms and breathing patterns. We hypothesized that it is possible to accurately stage sleep based on the electrocardiogram (ECG) and respiratory signals.

Methods: Using a dataset including 8682 polysomnograms, we develop deep neural networks to stage sleep from ECG and respiratory signals.

View Article and Find Full Text PDF