Hypothesis: The formation of transient networks of giant micelles leads to a viscosity peak when salt is added to aqueous solutions of charged surfactants. It is the consequence of an increase of the packing parameter due to charge screening of the surfactant headgroups, leading to a continuous transformation of the aggregates from spherical to wormlike micelles, and finally to branched networks. It should therefore be possible to predict the macroscopic viscosity of entangled giant micelles by modelling the packing parameter at nanoscale.
View Article and Find Full Text PDFThe intramolecular (13)C composition of a molecule retains evidence relevant to its (bio)synthetic history and can provide valuable information in numerous fields ranging from biochemistry to environmental sciences. Isotope ratio monitoring by (13)C NMR spectrometry (irm-(13)C NMR) is a generic method that offers the potential to conduct (13)C position-specific isotope analysis with a precision better than 1‰. Until now, determining absolute values also required measurement of the global (or bulk) (13)C composition (δ(13)Cg) by mass spectrometry.
View Article and Find Full Text PDFIsomeric mixtures from synthetic or natural origins can pose fundamental challenges for their chromatographic separation and spectroscopic identification. A novel 1D selective NMR experiment, chemical shift selective filter (CSSF)-TOCSY-INEPT, is presented that allows the extraction of (13) C NMR subspectra of discrete isomers in complex mixtures without physical separation. This is achieved via CSS excitation of proton signals in the (1) H NMR mixture spectrum, propagation of the selectivity by polarization transfer within coupled (1) H spins, and subsequent relaying of the magnetization from (1) H to (13) C by direct INEPT transfer to generate (13) C NMR subspectra.
View Article and Find Full Text PDFIsotopic (13)C NMR spectrometry, which is able to measure intra-molecular (13)C composition, is of emerging demand because of the new information provided by the (13)C site-specific content of a given molecule. A systematic evaluation of instrumental behaviour is of importance to envisage isotopic (13)C NMR as a routine tool. This paper describes the first collaborative study of intra-molecular (13)C composition by NMR.
View Article and Find Full Text PDFHemiacetals of pyridine-2-carbaldehyde derivatives and volatile alcohols can be stabilized in organic solution in the presence of protons or different metal cations. Despite the inherent instability of hemiacetals in H(2) O, stabilizing them with zinc(II) triflate and adding them to a cationic surfactant formulation resulted in the slow release of the alcohol from cotton surfaces being treated with the hemiacetal complex. Stabilized hemiacetals might thus be suitable delivery systems of bioactive volatiles by rapid hydrolysis in H(2) O-based media.
View Article and Find Full Text PDFIn the presence of alkali metal cations, guanosine-5'-hydrazide (1) forms stable supramolecular hydrogels by selective self-assembly into a G-quartet structure. Besides being physically trapped inside the gel structure, biologically active aldehydes or ketones can also reversibly react with the free hydrazide functions at the periphery of the G-quartet to form acylhydrazones. This particularity makes the hydrogels interesting as delivery systems for the slow release of bioactive carbonyl derivatives.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2011
Droplet size distribution of flavor oils in two different solid flavor delivery systems were determined with pulsed field gradient NMR spectroscopy: yeast encapsulation system, a spray dried flavor encapsulation system based on empty yeast cells, and glassy encapsulation system, an extruded solid water soluble carbohydrate delivery system. The oil droplet sizes are limited by the yeast cell walls in the yeast encapsulation system and the size distribution is unimodal according to images from transmission electron microscopy. The droplet size determination with diffusion NMR is based on the Murday and Cotts theory of restricted diffusion of liquids in geometrical confinements.
View Article and Find Full Text PDFActive materials that can solubilize in different compartments of a sample show release properties which might be of interest in some applications where a delayed release of solutes for instance is required. We studied perfume solutes in compartments of Pluronic block copolymers of different compositions and molecular weights over a range of ethanol-water mixtures. Phase diagrams were constructed to identify and map micellar phases, then dynamic light scattering was used to characterize the solute-swollen micelles; NMR provided with the partition of solutes between solvent and micelles, and equilibrium constants K(c) were estimated using headspace analysis.
View Article and Find Full Text PDFA simple alternative method for obtaining "random coil" chemical shifts by intrinsic referencing using the protein's own peptide sequence is presented. These intrinsic random coil backbone shifts were then used to calculate secondary chemical shifts, that provide important information on the residual secondary structure elements in the acid-denatured state of an acyl-coenzyme A binding protein. This method reveals a clear correlation between the carbon secondary chemical shifts and the amide secondary chemical shifts 3-5 residues away in the primary sequence.
View Article and Find Full Text PDFParamagnetic relaxation enhancement measurements in the denatured state of ACBP have provided distance restraints that have been used in computer simulations to determine the conformational ensembles representing the denatured states of ACBP under a variety of conditions. A detailed comparison of the residual structure in the denatured state of ACBP under these different conditions has enabled us to infer that regions in the N and C-terminal parts of the protein sequence have a high tendency to interact in the unfolded state under physiological conditions. By comparing the structural features in the denatured states with those in the transition state for folding we also provided new insights into the mechanism of formation of the native state of this protein.
View Article and Find Full Text PDFThe peptide segment corresponding to helix A4 in acyl-coenzyme-A-binding protein (ACBP) is an exceptionally stable helix in the denatured state of the protein as well as in its isolated form. Circular dichroism spectroscopy showed an alpha-helix content in the helix A4 peptide (HA4) of 45%, and under denaturing conditions at pH 2.3, helix conformations are still populated in 24% of the ensemble of molecules.
View Article and Find Full Text PDFResidual dipolar couplings in the denatured state of bovine acyl-coenzyme A binding protein (ACBP) oriented in strained polyacrylamide gels have been shown to be a sensitive, sequence-specific probe for residual secondary structure. Results supporting this were obtained by comparing residual dipolar couplings under different denaturing conditions. The data were analyzed using the program molecular fragment replacement (MFR), which demonstrated alpha-helix propensity in four isolated stretches along the protein backbone, and these coincide with the location of native helices.
View Article and Find Full Text PDFThe denatured state of a protein contains important information about the determinants of the folding process. By combining site-directed spin-labeling NMR experiments and restrained computer simulations, we have determined ensembles of conformations that represent the denatured state of the bovine acyl-coenzyme A binding protein (ACBP) at three different concentrations of guanidine hydrochloride. As the experimentally determined distance information corresponds to weighted averages over a broad ensemble of structures, we applied the experimental restraints to a system of noninteracting replicas of the protein by using a Monte Carlo sampling scheme.
View Article and Find Full Text PDF