Publications by authors named "Wolfgang F Rogge"

The authors would like to call the reader's attention to the fact that unfortunately Orhan Sevimoglu's affiliation was wrong in the original publication.

View Article and Find Full Text PDF

As part of the Baltimore PM2.5 Supersite study, intensive three-hourly continuous PM2.5 sampling was conducted for nearly 4 weeks in summer of 2002 and as well in winter of 2002/2003.

View Article and Find Full Text PDF

A relative risk assessment of biosolids disposal alternatives for cruise ships is presented in this paper. The area of study encompasses islands and marine waters of the Caribbean Sea. The objective was to evaluate relative human health and ecological risks of (a) dewatering/incineration, (b) landing the solids for disposal, considering that in some countries land-disposed solids might be discharged in the near-shore environment untreated, and (c) deep ocean disposal.

View Article and Find Full Text PDF

The chemical mass balance model is applied to a large dataset of organic molecular marker concentrations to apportion ambient organic aerosol to food cooking emissions in Pittsburgh, Pennsylvania. Ambient concentrations of key cooking markers such as palmitoleic acid, oleic acid, and cholesterol are well correlated, which implies the existence of well-defined source profiles. However, significant inconsistencies exist between the ambient data and published source profiles.

View Article and Find Full Text PDF

Chemical mass balance analysis was performed using a large dataset of molecular marker concentrations to estimate the contribution of biomass smoke to ambient organic carbon (OC) and fine particle mass in Pittsburgh, Pennsylvania. Source profiles were selected based on detailed comparisons between the ambient data and a large number of published profiles. The fall and winter data were analyzed with fireplace and woodstove source profiles, and open burning profiles were used to analyze the spring and summer data.

View Article and Find Full Text PDF

Individual organic compounds often referred to as molecular markers are used in conjunction with the chemical mass balance (CMB) model to apportion sources of primary organic aerosol. This paper presents a methodology to visualize molecular marker data; it allows comparison of ambient data and source profiles and allows assessment of chemical stability and aging. The method is intended to complement traditional quantitative source apportionment analysis.

View Article and Find Full Text PDF

The presence of saccharides is being reported for aerosols taken in urban, rural, and marine locales. The commonly found primary saccharides are alpha- and beta-glucose, alpha- and beta-fructose, sucrose, and mycose with lesser amounts of other monosaccharides. Saccharide polyols are also found in some airsheds and consist mainly of sorbitol, xylitol, mannitol, erythritol, and glycerol.

View Article and Find Full Text PDF