Entropy (Basel)
December 2018
We propose a modeling framework for magnetizable, polarizable, elastic, viscous, heat conducting, reactive mixtures in contact with interfaces. To this end, we first introduce bulk and surface balance equations that contain several constitutive quantities. For further modeling of the constitutive quantities, we formulate constitutive principles.
View Article and Find Full Text PDFElectron transfer reactions are commonly described by the phenomenological Butler-Volmer equation which has its origin in kinetic theories. The Butler-Volmer equation relates interfacial reaction rates to bulk quantities like the electrostatic potential and electrolyte concentrations. Although the general structure of the equation is well accepted, for modern electrochemical systems like batteries and fuel cells there is still intensive discussion about the specific dependencies of the coefficients.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2015
We consider the contact between an electrolyte and a solid electrode. At first we formulate a thermodynamic consistent model that resolves boundary layers at interfaces. The model includes charge transport, diffusion, chemical reactions, viscosity, elasticity and polarization under isothermal conditions.
View Article and Find Full Text PDFThis is a study on electrolytes that takes a thermodynamically consistent coupling between mechanics and diffusion into account. It removes some inherent deficiencies of the popular Nernst-Planck model. A boundary problem for equilibrium processes is used to illustrate the features of the new model.
View Article and Find Full Text PDFLithium batteries are considered the key storage devices for most emerging green technologies such as wind and solar technologies or hybrid and plug-in electric vehicles. Despite the tremendous recent advances in battery research, surprisingly, several fundamental issues of increasing practical importance have not been adequately tackled. One such issue concerns the energy efficiency.
View Article and Find Full Text PDF