Background: Chemotherapy-induced cognitive impairment (CICI) is a well-recognized side effect of breast cancer treatment. However, prospective long-term evaluations of CICI using standardized neuropsychological tests are scarce.
Patients And Methods: This prospective longitudinal cohort study investigated cognitive dysfunction and its impact on quality of life and everyday functioning in patients with breast cancer receiving first-line chemotherapy compared to patients with breast cancer without chemotherapy.
Trends Pharmacol Sci
October 2024
Chemotherapy-induced peripheral neuropathy (CIPN) is a common side effect of chemotherapy. The frequency of CIPN ranges from one in three to almost all patients depending on type of chemotherapy and dose. It causes symptoms that can range from sensitivity to touch and numbness to neuropathic pain in hands and feet.
View Article and Find Full Text PDFBackground: Central nervous system (CNS) injury following brain-directed radiotherapy remains a major challenge. Proton radiotherapy (PRT) minimizes radiation to healthy brain, potentially limiting sequelae. We characterized CNS radiotoxicity, including radiation-induced leukoencephalopathy (RIL), brain tissue necrosis (TN), and cerebral microbleeds (CMB), in glioma patients treated with PRT or photons (XRT).
View Article and Find Full Text PDFNCS1 (Neuronal calcium sensor protein 1) encodes a highly conserved calcium binding protein abundantly expressed in neurons. It modulates intracellular calcium homeostasis, calcium-dependent signaling pathways as well as neuronal transmission and plasticity. Here, we generated a NCS1 knockout human induced pluripotent stem cell (hiPSC) line using CRISPR-Cas9 genome editing.
View Article and Find Full Text PDFBackground: Neurologic immune-related adverse events (irAE-n) are rare but severe toxicities of immune checkpoint inhibitor (ICI) treatment. To overcome diagnostic and therapeutic challenges, a better mechanistic understanding of irAE-n is paramount.
Methods: In this observational cohort study, we collected serum and peripheral blood samples from 34 consecutive cancer patients with irAE-n (during acute illness) and 49 cancer control patients without irAE-n (pre- and on-ICI treatment, n = 44 without high-grade irAEs, n = 5 with high-grade nonneurologic irAEs).
Central nervous system (CNS) radiotoxicity remains a challenge in neuro-oncology. Dose distribution advantages of protons over photons have prompted increased use of brain-directed proton therapy. While well-recognized among pediatric populations, the benefit of proton therapy among adults with CNS malignancies remains controversial.
View Article and Find Full Text PDFBackground: Neurological immune-related adverse events (irAE-n) are severe and potentially fatal toxicities of immune checkpoint inhibitors (ICI). To date, the clinical significance of neuronal autoantibodies in irAE-n is poorly understood. Here, we characterize neuronal autoantibody profiles in patients with irAE-n and compare these with ICI-treated cancer patients without irAE-n.
View Article and Find Full Text PDFNeurotoxic phenomena are among the most common side effects of cytotoxic agents. The development of chemotherapy-induced polyneuropathy (CIPN) is a well-recognized adverse reaction in the peripheral nervous system, while changes of cognitive functions (post-chemotherapy cognitive impairment (PCCI)) are more diffuse and have only recently drawn scientific interest. PCCI in patients most often displays as short-term memory loss, reduced multitasking ability or deficits in language.
View Article and Find Full Text PDFAim: Immune checkpoint inhibitor-induced encephalitis (ICI-iE) is a rare but life-threatening toxicity of immune checkpoint inhibitor treatment. We aim to identify the characteristics of ICI-iE and describe factors that discriminate it from herpes simplex virus (HSV)-1 encephalitis and anti-leucine-rich glioma-inactivated 1 (anti-LGI1) encephalitis, as two alternative entities of encephalitis.
Methods: In this retrospective multicentre cohort study, we collected patients with ICI-iE reported to the Side Effect Registry Immuno-Oncology from January 2015 to September 2021 and compared their clinical features and outcome with 46 consecutive patients with HSV-1 or anti-LGI1 encephalitis who were treated at a German neurological referral centre.
Front Med (Lausanne)
August 2022
Introduction: Chemotherapy-induced polyneuropathy (CIPN) and post-chemotherapy cognitive impairment (PCCI) are frequent side effects of paclitaxel treatment. CIPN/PCCI are potentially irreversible, reduce quality of life and often lead to treatment limitations, which affect patients' outcome. We previously demonstrated that paclitaxel enhances an interaction of the Neuronal calcium sensor-1 protein (NCS-1) with the Inositol-1,4,5-trisphosphate receptor (InsPR), which disrupts calcium homeostasis and triggers neuronal cell death via the calcium-dependent protease calpain in dorsal root ganglia neurons and neuronal precursor cells.
View Article and Find Full Text PDFBACKGROUNDPaclitaxel chemotherapy frequently induces dose-limiting sensory axonal polyneuropathy. Given that sensory symptoms are challenging to assess objectively in clinical practice, an easily accessible biomarker for chemotherapy-induced polyneuropathy (CIPN) holds the potential to improve early diagnosis. Here, we describe neurofilament light chain (NFL), a marker for neuroaxonal damage, as a translational surrogate marker for CIPN.
View Article and Find Full Text PDFChemotherapy-induced peripheral neuropathy (CIPN) is a frequent and potentially irreversible adverse event of cytotoxic chemotherapy. We evaluate whether sensory neurons derived from induced pluripotent stem cells (iPSC-DSN) can serve as human disease model system for chemotherapy induced neurotoxicity. Sensory neurons differentiated from two established induced pluripotent stem cell lines were used (s.
View Article and Find Full Text PDFChemotherapy-induced peripheral neuropathy (CIPN) is a frequent, potentially irreversible adverse effect of cytotoxic chemotherapy often leading to a reduction or discontinuation of treatment which negatively impacts patients' prognosis. To date, however, neither predictive biomarkers nor preventive treatments for CIPN are available, which is partially due to a lack of suitable experimental models. We therefore aimed to evaluate whether sensory neurons derived from induced pluripotent stem cells (iPSC-DSN) can serve as human disease model system for CIPN.
View Article and Find Full Text PDFThe 26S proteasome inhibitor bortezomib is currently used to treat multiple myeloma but also is effective in the treatment of antibody-mediated autoimmune disorders. One clinical concern is bortezomib's toxicity towards the (central) nervous system. We used standardized neuropsychological testing to assess cognitive function in six patients with myasthenia gravis and systemic lupus erythematodes before and after treatment with a mean cumulative dose of 9.
View Article and Find Full Text PDFObjective: Critical illness polyneuropathy (CIP) is a common complication of severe systemic illness treated in intensive care medicine. Ischemic stroke leads to an acute critical injury of the brain with hemiparesis, immunosuppression and subsequent infections, all of which require extended medical treatment. Stroke-induced sarcopenia further contributes to poor rehabilitation and is characterized by muscle wasting and denervation in the paralytic, but also the unaffected limbs.
View Article and Find Full Text PDFBackground: Neurotoxicity is a frequent side effect of cytotoxic chemotherapy and affects a large number of patients. Despite the high medical need, few research efforts have addressed the impact of cytotoxic agents on cognition (ie, postchemotherapy cognitive impairment; PCCI). One unsolved question is whether individual cytotoxic drugs have differential effects on cognition.
View Article and Find Full Text PDFThe microtubule-stabilizing agent paclitaxel frequently leads to chemotherapy-induced peripheral neuropathy (CIN), which further increases the burden of disease and often necessitates treatment limitations. The pathophysiology of CIN appears to involve both "upstream" effects including altered intracellular calcium signaling and activation of calcium dependent proteases such as calpain as well as subsequent "downstream" neuro-inflammatory reactions with cytokine release and macrophage infiltration of dorsal root ganglia. In this study, we aimed to investigate whether these processes are linked by the pro-inflammatory cytokine interleukin-6 (IL-6).
View Article and Find Full Text PDFBackground: It was previously reported that high salt dietary conditions can drive autoimmunity and worsen severity and symptoms of autoimmune diseases. Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a common autoimmune condition of the peripheral nervous system which leads to progressive paralysis and sensory deficits due to a demyelination and secondary axonal loss of peripheral nerves. We used a previously described model with a knockout of CD86 in non-obese diabetic mice (CD86 NOD), which results in the spontaneous development of an autoimmune peripheral neuropathy similar to CIDP and investigated the influence of a high salt diet on functional impairment, electrophysiological parameters, demyelination and neuroinflammation in these mice.
View Article and Find Full Text PDFPaclitaxel is a cytotoxic drug which frequently causes sensory peripheral neuropathy in patients. Increasing evidence suggests that altered intracellular calcium (Ca) signals play an important role in the pathogenesis of this condition. In the present study, we examined the interplay between Ca release channels in the endoplasmic reticulum (ER) and Ca permeable channels in the plasma membrane in the context of paclitaxel mediated neurotoxicity.
View Article and Find Full Text PDFChronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is an autoimmune disorder, which causes progressive sensory and motor deficits and often results in severe disability. Knockout of the co-stimulatory protein CD86 in mice of the non-obese diabetic background (NoD.129S4-Cd86 /JbsJ) results in the development of a spontaneous autoimmune peripheral polyneuropathy (SAPP).
View Article and Find Full Text PDFSuramin is a trypan blue analogon originally developed to treat protozoan infections, which was found to have diverse antitumor effects. One of the most severe side effects in clinical trials was the development of a peripheral sensory-motor polyneuropathy. In this study, we aimed to investigate suramin-induced neuropathy with a focus on calcium (Ca) homeostasis as a potential pathomechanism.
View Article and Find Full Text PDFImpaired actin filament dynamics have been associated with cellular senescence. Microglia, the resident immune cells of the brain, are emerging as a central pathophysiological player in neurodegeneration. Microglia activation, which ranges on a continuum between classical and alternative, may be of critical importance to brain disease.
View Article and Find Full Text PDF