Publications by authors named "Wolfgang Beck"

Motivation: Splice variant neoantigens are a potential source of tumor-specific antigen (TSA) that are shared between patients in a variety of cancers, including acute myeloid leukemia. Current tools for genomic prediction of splice variant neoantigens demonstrate promise. However, many tools have not been well validated with simulated and/or wet lab approaches, with no studies published that have presented a targeted immunopeptidome mass spectrometry approach designed specifically for identification of predicted splice variant neoantigens.

View Article and Find Full Text PDF
Article Synopsis
  • The growth of beech trees (Fagus sylvatica) has been negatively impacted by climate variability, showing declines in recent decades across a large geographic range.* -
  • Models predict that by 2090, growth could decrease by 20% to over 50%, particularly in southern regions where drought conditions are expected to worsen due to climate change.* -
  • These anticipated declines in forest productivity pose significant ecological and economic risks, highlighting the urgent need for adaptive strategies in forest management.*
View Article and Find Full Text PDF

Although immune-checkpoint inhibitors (ICIs) have been a remarkable advancement in bladder cancer treatment, the response rate to single-agent ICIs remains suboptimal. There has been substantial interest in the use of epigenetic agents to enhance ICI efficacy, although precisely how these agents potentiate ICI response has not been fully elucidated. We identified entinostat, a selective HDAC1/3 inhibitor, as a potent antitumor agent in our immune-competent bladder cancer mouse models (BBN963 and BBN966).

View Article and Find Full Text PDF

Background: Early in the pandemic, we designed a SARS-CoV-2 peptide vaccine containing epitope regions optimized for concurrent B cell, CD4 T cell, and CD8 T cell stimulation. The rationale for this design was to drive both humoral and cellular immunity with high specificity while avoiding undesired effects such as antibody-dependent enhancement (ADE).

Methods: We explored the set of computationally predicted SARS-CoV-2 HLA-I and HLA-II ligands, examining protein source, concurrent human/murine coverage, and population coverage.

View Article and Find Full Text PDF

There is an urgent need for a vaccine with efficacy against SARS-CoV-2. We hypothesize that peptide vaccines containing epitope regions optimized for concurrent B cell, CD4 T cell, and CD8 T cell stimulation would drive both humoral and cellular immunity with high specificity, potentially avoiding undesired effects such as antibody-dependent enhancement (ADE). Additionally, such vaccines can be rapidly manufactured in a distributed manner.

View Article and Find Full Text PDF

Recording the causes, effects, and effect mechanisms of vegetation health is crucial to understand process-pattern interactions in ecosystem processes. NO and SO in the form of air pollution are both triggers and sources of vegetation health that can have an effect on the local or the global level and whose impacts need to be monitored. In this study, the growth patterns in Scots pines (Pinus sylvestris L.

View Article and Find Full Text PDF

The selective oestrogen receptor modulator tamoxifen is a leading agent in the adjuvant treatment of breast cancer. Several organometallic moieties have been vectorised with tamoxifen, in order to improve on the latter's antiproliferative properties by the addition of a potentially cytotoxic moiety, and have been evaluated versus both oestrogen receptor positive (MCF7) and oestrogen receptor negative (MDA-MB231) breast cancer cells. For tamoxifen analogues with ((R,R)-trans-1,2-diaminocyclohexane)platinum(II), cyclopentadienyl rhenium tricarbonyl, and ruthenocene tethers, there was no enhancement of the antiproliferative effect on oestrogen receptor positive cells, nor any cytotoxic effect on oestrogen receptor negative cells, while those containing cyclopentadienyl titanium dichloride showed an oestrogenic effect.

View Article and Find Full Text PDF

The anions [ReX3(CO)2(NO)]- (with X = Cl, 1; X = Br, 2) have been prepared with different counterions. Complex 1 was found to lose its chloride ligands in water within 24 h. The [Re(H2O)3(CO)2(NO)]2+ cation obtained after hydrolysis is a strong acid, which consequently undergoes a slow condensation reaction in water to form the very stable [Re(mu3-O)(CO)2(NO)]4 cluster 4 at pH > 2, that precipitates from the aqueous solution and is insoluble also in organic solvents.

View Article and Find Full Text PDF

A straightforward method for the synthesis of enantiomerically pure bis(valine)metallocenes is presented. Derivatives of lithium cyclopentadienylvaline 1a, b were obtained by addition of the (R)- or (S)-Schöllkopf reagents to 6,6-dimethylfulvene as single enantiomers and gave with FeCl2 or [RuCl2(dmso)4] the chiral metallocenes [Fe[C5H4-CMe2-[C4H2N2(OMe)2iPr]]2] (2a, b) and [Ru[C5H4-CMe2-[C4H2N2(OMe)2iPr]]2] (3a, b). Complex 2b was hydrolyzed to the ferrocenylene-bis(valine-methylester) [[Fe[C5H4-CMe2-CH(NH3+)COOMe]2]2+(Cl-)2] (7) without racemization.

View Article and Find Full Text PDF

A new, interdisciplinary research area has emerged known as bioorganometallic chemistry. It focuses on the introduction of organometallic fragments into biomolecules (see, for example, structure on the right). "Classical" α-amino acid and peptide ligands have proven particularly versatile, and provide access to compounds that display interesting stereochemistry.

View Article and Find Full Text PDF

The cyclization of dipeptide esters of α-, β-, γ-, and δ-amino acids can be achieved by using Ni , Pd , or Cu templates. The structure of one of the complexes (1) obtained, which was determined by X-ray crystallography, reveals that the anions form layers and are linked to water molecules by hydrogen bonds.

View Article and Find Full Text PDF

With the radical 2,5-dihydro-4,5,5-trimethyl-2,2-bis(2-pyridyl)imidazole-1-oxyl (L) a series of transition metal complexes have been prepared: [ML(2)](SbF(6))(2) with M(2+) = Mn(2+) (1), Fe(2+) (2), Co(2+) (3), Ni(2+) (4), Cu(2+) (5), and Zn(2+) (6), Cu(L)(Cl)(2)(MeOH) (7), and Cu(L)SO(4).H(2)O (8). The structures of 1, 3, and 6 were determined by X-ray structural analyses.

View Article and Find Full Text PDF