The downstream regulatory element antagonist modulator (DREAM) modulates ion channel function and gene transcription. Functionally, DREAM is implicated in physiological and pathological processes including cell proliferation, inflammation, and nociception. Despite its multiple functions and robust expression in forebrain tissue, neurons and glial cells, the role of DREAM in regard to cellular plasticity and tumor necrosis factor (TNF)-mediated inflammation is largely unexplored.
View Article and Find Full Text PDFBackground: We recently developed a liposomal nanoparticle system that can be used for drug delivery and simultaneously be monitored by optical or photoacoustic imaging devices. Here we tested the efficacy of alendronate as a homing molecule in SM-liposomes for bone targeting.
Methods: Alendronate was immobilized covalently on the liposomal surface and the fluorescent dye indocyanine green was used as a payload in the liposomes.
Systemic immune dysregulation contributes to the development of neuropsychiatric and neurodegenerative diseases. The precise effect of chronic peripheral immune stimulation on myeloid cells across anatomical brain regions is unclear. Here, we demonstrate brain-region-specific differences in myeloid responses induced by chronic peripheral inflammation.
View Article and Find Full Text PDFClosed circulatory systems (CCS) underlie the function of vertebrate organs, but in long bones their structure is unclear, although they constitute the exit route for bone marrow (BM) leukocytes. To understand neutrophil emigration from BM, we studied the vascular system of murine long bones. Here we show that hundreds of capillaries originate in BM, cross murine cortical bone perpendicularly along the shaft and connect to the periosteal circulation.
View Article and Find Full Text PDFBackground: Glucocorticoid (GC) therapy is frequently used to treat rheumatoid arthritis due to potent anti-inflammatory actions of GCs. Direct actions of GCs on immune cells were suggested to suppress inflammation.
Objectives: Define the role of the glucocorticoid receptor (GR) in stromal cells for suppression of inflammatory arthritis.
Background: ADAMTS aggrecanases play a major role in cartilage degeneration during degenerative and inflammatory arthritis. The cartilage-specific secreted protein Upper zone of growth plate and cartilage matrix associated protein (Ucma) has been shown to block ADAMTS-triggered aggrecanolysis in experimental osteoarthritis. Here we aimed to investigate whether and how Ucma may affect cartilage destruction and osteophyte formation in the context of inflammatory arthritis.
View Article and Find Full Text PDFThe prevalence of neurodegenerative disease and arthritis increases with age. Despite both processes being associated with immune activation and inflammation, little is known about the mechanistic interactions between neurodegenerative disease and arthritis. In this article, we show that tau-transgenic (tau-tg) mice that develop neurodegenerative disease characterized by deposition of tau tangles in the brain are highly susceptible to developing arthritis.
View Article and Find Full Text PDFAlthough articular cartilage degeneration represents a major public health problem, the underlying molecular mechanisms are still poorly characterized. We have previously utilized genome-wide expression analysis to identify specific markers of porcine articular cartilage, one of them being Thrombospondin-4 (Thbs4). In the present study we analyzed Thbs4 expression in mice, thereby confirming its predominant expression in articular cartilage, but also identifying expression in other tissues, including bone.
View Article and Find Full Text PDFChronic peripheral inflammation mediated by cytokines such as TNFα, IL-1β, and IL-6 is associated with psychiatric disorders like depression and anxiety. However, it remains elusive which distinct type of peripheral inflammation triggers neuroinflammation and affects hippocampal plasticity resulting in depressive-like behavior. We hypothesized that chronic peripheral inflammation in the human TNF-α transgenic (TNFtg) mouse model of rheumatoid arthritis spreads into the central nervous system and induces depressive state manifested in specific behavioral pattern and impaired adult hippocampal neurogenesis.
View Article and Find Full Text PDFImmunglobulin G (IgG) sialylation represents a key checkpoint that determines the engagement of pro- or anti-inflammatory Fcγ receptors (FcγR) and the direction of the immune response. Whether IgG sialylation influences osteoclast differentiation and subsequently bone architecture has not been determined yet, but may represent an important link between immune activation and bone loss. Here we demonstrate that desialylated, but not sialylated, immune complexes enhance osteoclastogenesis in vitro and in vivo.
View Article and Find Full Text PDFObjective: Rheumatoid arthritis therapies that are based on inhibition of a single cytokine, e.g., tumor necrosis factor α (TNFα) or interleukin-6 (IL-6), produce clinically meaningful responses in only about half of the treated patients.
View Article and Find Full Text PDFBackground: The overexpression of tumor necrosis factor (TNF)-α leads to systemic as well as local loss of bone and cartilage and is also an important regulator during fracture healing. In this study, we investigate how TNF-α inhibition using a targeted monoclonal antibody affects fracture healing in a TNF-α driven animal model of human rheumatoid arthritis (RA) and elucidate the question whether enduring the anti TNF-α therapy after trauma is beneficial or not.
Methods: A standardized femur fracture was applied to wild type and human TNF-α transgenic mice (hTNFtg mice), which develop an RA-like chronic polyarthritis.
Objective: To test whether inhibition of sclerostin by a targeted monoclonal antibody (Scl-Ab) protects from bone and cartilage damage in inflammatory arthritis. Sclerostin is a potent inhibitor of bone formation and may be responsible for the low level of bone repair in patients with rheumatoid arthritis.
Methods: Human tumour necrosis factor transgenic mice (hTNFtg mice) developing inflammatory arthritis and local and bone loss were administered either vehicle, anti-TNF antibody, Scl-Ab, or a combination of both agents.
Autoimmunity is complicated by bone loss. In human rheumatoid arthritis (RA), the most severe inflammatory joint disease, autoantibodies against citrullinated proteins are among the strongest risk factors for bone destruction. We therefore hypothesized that these autoantibodies directly influence bone metabolism.
View Article and Find Full Text PDFBackground: Osteophyte formation is a common phenomenon in arthritis. Bone formation by endochondral ossification is considered a key pathophysiological process in the formation of osteophytes.
Objective: To examine the hypothesis that inhibition of smoothened (Smo), a key component of the hedgehog pathway inhibits osteophyte formation as the hedgehog pathway mediates endochondral ossification.
Tumour necrosis factor alpha (TNF-α) is a major inducer for inflammation and bone loss. Here, we investigated whether interleukin (IL)-17 plays a role in TNF-α-mediated inflammation and bone resorption. Human TNF-α transgenic (hTNFtg) mice were treated with a neutralizing anti-IL-17A antibody and assessed for inflammation, cartilage and bone damage.
View Article and Find Full Text PDFObjective: Reduced vitamin D intake has been linked to increased susceptibility to develop rheumatoid arthritis (RA) and vitamin D deficiency is associated with increased disease activity in RA patients. The pathophysiological role of vitamin D in joint inflammation is, however, unclear.
Methods: To determine the influence of absent vitamin D signalling in chronic arthritis, vitamin D receptor (VDR)-deficient mice were crossed with human tumour necrosis factor (TNF) transgenic mice (hTNFtg), which spontaneously develop chronic arthritis.
Objective: The proteasome inhibitor bortezomib has potent anti-myeloma and bone-protective activity. Recently, bortezomib was shown to directly inhibit osteoclastogenesis. The aim of this study was to analyze the influence and therapeutic effect of bortezomib in a mouse model of inflammatory arthritis.
View Article and Find Full Text PDFUnlabelled: Introduction Inflammation is a major risk factor for systemic bone loss. Proinflammatory cytokines like tumour necrosis factor (TNF) affect bone homeostasis and induce bone loss. It was hypothesised that impaired bone formation is a key component in inflammatory bone loss and that Dkk-1, a Wnt antagonist, is a strong inhibitor of osteoblast-mediated bone formation.
View Article and Find Full Text PDFNitrogen-containing bisphosphonates (N-BPs) are effective antiosteolytic agents in patients with multiple myeloma. Preclinical studies have also demonstrated that these agents have direct antitumor effects in vitro and can reduce tumor burden in a variety of animal models, although it is not clear whether such effects are caused by direct actions on tumor cells or by inhibition of bone resorption. N-BPs prevent bone destruction in myeloma by inhibiting the enzyme farnesyl pyrophosphate synthase in osteoclasts, thereby preventing the prenylation of small GTPase signaling proteins.
View Article and Find Full Text PDFAnnexins are characterized by the ability to bind phospholipids of membranes in the presence of Ca2+. Annexin A5 represents a typical member of this protein family and is a natural occurring highly specific ligand for phosphatidylserine (PS). The exposure of PS is one major "eat me" signal for phagocytes of apoptotic and necrotic cells.
View Article and Find Full Text PDFApoptotic and necrotic cells expose phosphatidylserine (PS). This membrane modification ensures a swift recognition and uptake by phagocytes of the dying and dead cells. Annexin V (AxV) preferentially binds to anionic phospholipids and thereby, modulates the clearance process.
View Article and Find Full Text PDFCytokines of the gp130 family, particularly interleukin 6 (IL-6), play a central role in the growth and survival of malignant plasma cells. Recently, novel neurotrophin-1 (NNT-1)/B cell-stimulating factor-3 (BSF-3), also reported as cardiotrophin-like cytokine (CLC), was identified as a cytokine belonging to the gp130 family. BSF-3, similar to IL-6, exerts regulatory effects on normal B cell functions, but its functional significance in haematological malignancies has not been defined.
View Article and Find Full Text PDF