Publications by authors named "Wolf-Julian Neumann"

Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.

View Article and Find Full Text PDF

Subthalamic (STN) deep brain stimulation (DBS) in Parkinson's disease (PD) patients not only improves kinematic parameters of movement but also modulates cognitive control in the motor and non-motor domain, especially in situations of high conflict. The objective of this study was to investigate the relationship between DBS-induced changes in functional connectivity at rest and modulation of response- and movement inhibition by STN-DBS in a visuomotor task involving high conflict. During DBS ON and OFF conditions, we conducted a visuomotor task in 14 PD patients who previously underwent resting-state functional MRI (rs-fMRI) acquisitions DBS ON and OFF as part of a different study.

View Article and Find Full Text PDF

Brain rhythms can facilitate neural communication for the maintenance of brain function. Beta rhythms (13-35 Hz) have been proposed to serve multiple domains of human ability, including motor control, cognition, memory, and emotion, but the overarching organisational principles remain unknown. To uncover the circuit architecture of beta oscillations, we leverage normative brain data, analysing over 30 hr of invasive brain signals from 1772 channels from cortical areas in epilepsy patients, to demonstrate that beta is the most distributed cortical brain rhythm.

View Article and Find Full Text PDF
Article Synopsis
  • Dystonia is a movement disorder linked to an imbalance in brain pathways involving the striatum and internal pallidum, but its neuronal causes are not fully understood.
  • This study conducted invasive recordings from ten dystonia patients using deep brain stimulation electrodes to observe brain activity across different basal ganglia nuclei.
  • Findings showed that low-frequency brain activity between the striatum and internal pallidum correlates with the severity of dystonic symptoms, highlighting the importance of the direct striato-pallidal pathway in the disorder's development.
View Article and Find Full Text PDF

The ability to initiate volitional action is fundamental to human behaviour. Loss of dopaminergic neurons in Parkinson's disease is associated with impaired action initiation, also termed akinesia. Both dopamine and subthalamic deep brain stimulation (DBS) can alleviate akinesia, but the underlying mechanisms are unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Deep Brain Stimulation (DBS) effectively improves symptoms of Parkinson's disease, including tremor, bradykinesia, rigidity, and axial symptoms, by stimulating specific white matter tracts.
  • A study involving 237 patients identified distinct brain tracts linked to improvements in each symptom, with tremor associated with the primary motor cortex and cerebellum, and axial symptoms linked to the supplementary motor cortex and brainstem.
  • An introduced algorithm utilizes these symptom-tract connections to tailor DBS settings for individual patients, aiming to enhance treatment effectiveness based on the most impactful symptoms for each person.
View Article and Find Full Text PDF

Sleep disturbances profoundly affect the quality of life in individuals with neurological disorders. Closed-loop deep brain stimulation (DBS) holds promise for alleviating sleep symptoms, however, this technique necessitates automated sleep stage decoding from intracranial signals. We leveraged overnight data from 121 patients with movement disorders (Parkinson's disease, Essential Tremor, Dystonia, Essential Tremor, Huntington's disease, and Tourette's syndrome) in whom synchronized polysomnograms and basal ganglia local field potentials were recorded, to develop a generalized, multi-class, sleep specific decoder - BGOOSE.

View Article and Find Full Text PDF

Background: It has been proposed that tics and premonitory urges in primary tic disorders (PTD), like Tourette syndrome, are a manifestation of sensorimotor noise. However, patients with tics show no obvious movement imprecision in everyday life. One reason could be that patients have strategies to compensate for noise that disrupts performance (ie, noise that is task-relevant).

View Article and Find Full Text PDF

Background: Rapid eye movement (REM) sleep behaviour disorder (RBD) is one of the most common sleep problems and represents a key prodromal marker in Parkinson's disease (PD). It remains unclear whether and how basal ganglia nuclei, structures that are directly involved in the pathology of PD, are implicated in the occurrence of RBD.

Method: Here, in parallel with whole-night video polysomnography, we recorded local field potentials from two major basal ganglia structures, the globus pallidus internus and subthalamic nucleus, in two cohorts of patients with PD who had varied severity of RBD.

View Article and Find Full Text PDF

Subthalamic beta band activity (13-35 Hz) is known as a real-time correlate of motor symptom severity in Parkinson's disease (PD) and is currently explored as a feedback signal for closed-loop deep brain stimulation (DBS). Here, we investigate the interaction of movement, dopaminergic medication, and deep brain stimulation on subthalamic beta activity in PD patients implanted with sensing-enabled, implantable pulse generators. We recorded subthalamic activity from seven PD patients at rest and during repetitive movements in four conditions: after withdrawal of dopaminergic medication and DBS, with medication only, with DBS only, and with simultaneous medication and DBS.

View Article and Find Full Text PDF

The Deep Brain Stimulation (DBS) Think Tank XI was held on August 9-11, 2023 in Gainesville, Florida with the theme of "Pushing the Forefront of Neuromodulation". The keynote speaker was Dr. Nico Dosenbach from Washington University in St.

View Article and Find Full Text PDF

Background: Deep brain stimulation (DBS) is an invasive treatment option for patients with Parkinson's disease. Recently, adaptive DBS (aDBS) systems have been developed, which adjust stimulation timing and amplitude in real-time. However, it is unknown how changes in parameters, movement states and the controllability of subthalamic beta activity affect aDBS performance.

View Article and Find Full Text PDF

In Parkinson's disease, imbalances between 'antikinetic' and 'prokinetic' patterns of neuronal oscillatory activity are related to motor dysfunction. Invasive brain recordings from the motor network have suggested that medical or surgical therapy can promote a prokinetic state by inducing narrowband gamma rhythms (65-90 Hz). Excessive narrowband gamma in the motor cortex promotes dyskinesia in rodent models, but the relationship between narrowband gamma and dyskinesia in humans has not been well established.

View Article and Find Full Text PDF

Millions of people suffer from dopamine-related disorders spanning disturbances in movement, cognition and emotion. These changes are often attributed to changes in striatal dopamine function. Thus, understanding how dopamine signalling in the striatum and basal ganglia shapes human behaviour is fundamental to advancing the treatment of affected patients.

View Article and Find Full Text PDF

Spatial normalization-the process of mapping subject brain images to an average template brain-has evolved over the last 20+ years into a reliable method that facilitates the comparison of brain imaging results across patients, centers & modalities. While overall successful, sometimes, this automatic process yields suboptimal results, especially when dealing with brains with extensive neurodegeneration and atrophy patterns, or when high accuracy in specific regions is needed. Here we introduce WarpDrive, a novel tool for manual refinements of image alignment after automated registration.

View Article and Find Full Text PDF

Brain computer interfaces (BCI) provide unprecedented spatiotemporal precision that will enable significant expansion in how numerous brain disorders are treated. Decoding dynamic patient states from brain signals with machine learning is required to leverage this precision, but a standardized framework for identifying and advancing novel clinical BCI approaches does not exist. Here, we developed a platform that integrates brain signal decoding with connectomics and demonstrate its utility across 123 hours of invasively recorded brain data from 73 neurosurgical patients treated for movement disorders, depression and epilepsy.

View Article and Find Full Text PDF

Parkinson's disease (PD) is associated with excessive beta activity in the basal ganglia. Brain sensing implants aim to leverage this biomarker for demand-dependent adaptive stimulation. Sleep disturbance is among the most common non-motor symptoms in PD, but its relationship with beta activity is unknown.

View Article and Find Full Text PDF

Deep brain stimulation is a neuromodulatory treatment for managing the symptoms of Parkinson's disease and other neurological and psychiatric disorders. Electrodes are chronically implanted in disease-relevant brain regions and pulsatile electrical stimulation delivery is intended to restore neurocircuit function. However, the widespread interest in the application and expansion of this clinical therapy has preceded an overarching understanding of the neurocircuit alterations invoked by deep brain stimulation.

View Article and Find Full Text PDF

Closed-loop adaptive deep brain stimulation (aDBS) can deliver individualized therapy at an unprecedented temporal precision for neurological disorders. This has the potential to lead to a breakthrough in neurotechnology, but the translation to clinical practice remains a significant challenge. Via bidirectional implantable brain-computer-interfaces that have become commercially available, aDBS can now sense and selectively modulate pathophysiological brain circuit activity.

View Article and Find Full Text PDF
Article Synopsis
  • Sleep problems are common in people with movement disorders because their brain's basal ganglia aren't working right, but a treatment called pallidal deep brain stimulation (DBS) can help improve sleep.
  • Researchers studied brain signals (local field potentials) while 39 people with movement disorders were asleep to find out how these signals change during different sleep stages.
  • They discovered that they could use these brain signals to tell what stage of sleep a person is in, with over 90% accuracy, which could help create better treatments for sleep issues related to movement disorders.
View Article and Find Full Text PDF
Article Synopsis
  • * It shows that abnormal brain activity in conditions like Parkinson's disease can affect our movement.
  • * The review also talks about new technology that can make DBS even better by customizing treatment for individual people's brains.
View Article and Find Full Text PDF
Article Synopsis
  • The global north is experiencing a sharp rise in neurodegenerative diseases, particularly Parkinson's, which some experts are calling a pandemic, with lifestyle factors and circadian rhythms playing a role in this trend.
  • Circadian and sleep disruptions are linked to the early stages of neurodegeneration, with isolated REM sleep behavior disorder (iRBD) identified as indicative of conditions like Parkinson's and Lewy body dementia.
  • The review discusses current knowledge on the relationship between sleep, circadian rhythms, and α-synucleinopathies, highlighting potential experimental approaches that could lead to early interventions targeting circadian system disturbances.
View Article and Find Full Text PDF

Background: Subthalamic nucleus (STN) beta (13 - 35 Hz) activity is a biomarker reflecting motor state in Parkinson's disease (PD). Adaptive deep brain stimulation (DBS) aims to use beta activity for therapeutic adjustments, but many aspects of beta activity in real-life situations are unknown.

Objective: The aim was to investigate Christmas-related influences on beta activity in PD.

View Article and Find Full Text PDF