Composting recycles nutrients and biodegrades organic pollutants, but often results in N leaching. Biochar can enhance the composting process and reduce N losses. Research, however, has focused on composting N-rich residues; also, information on the fate of biochar polycyclic aromatic hydrocarbons (PAHs) during composting is scarce.
View Article and Find Full Text PDFEnviron Monit Assess
December 2021
Deterioration of groundwater quality due to nitrate loss from intensive agricultural systems can only be mitigated if methods for in-situ monitoring of nitrate leaching under active farmers' fields are available. In this study, three methods were used in parallel to evaluate their spatial and temporal differences, namely ion-exchange resin-based Self-Integrating Accumulators (SIA), soil coring for extraction of mineral N (Nmin) from 0 to 90 cm in Mid-October (pre-winter) and Mid-February (post-winter), and Suction Cups (SCs) complemented by a HYDRUS 1D model. The monitoring, conducted from 2017 to 2020 in the Gäu Valley in the Swiss Central Plateau, covered four agricultural fields.
View Article and Find Full Text PDFThe leaching of trace metals from anthropogenically contaminated sites poses the risk of groundwater pollution. Biochar has recently been proposed as a soil additive to reduce trace-metal concentrations in the soil solution and to increase water retention, thus reducing drainage. However, field studies on the effects of biochar addition on trace-metal leaching are scarce.
View Article and Find Full Text PDF