Worldwide, anthropogenic activities threaten surface water quality by aggravating eutrophication and increasing total nitrogen to total phosphorus (TN:TP) ratios. In hydrologically connected systems, water quality management may benefit from in-ecosystem nutrient retention by preventing nutrient transport to downstream systems. However, nutrient retention may also alter TN:TP ratios with unforeseen consequences for downstream water quality.
View Article and Find Full Text PDFWorldwide, water quality managers target a clear, macrophyte-dominated state over a turbid, phytoplankton-dominated state in shallow lakes. The competition mechanisms underlying these ecological states were explored in the 1990s, but the concept of critical turbidity seems neglected in contemporary water quality models. In particular, a simple mechanistic model of alternative stable states in shallow lakes accounting for resource competition mechanisms and critical turbidity is lacking.
View Article and Find Full Text PDFEcologists are challenged by the need to bridge and synthesize different approaches and theories to obtain a coherent understanding of ecosystems in a changing world. Both food web theory and regime shift theory shine light on mechanisms that confer stability to ecosystems, but from different angles. Empirical food web models are developed to analyze how equilibria in real multi-trophic ecosystems are shaped by species interactions, and often include linear functional response terms for simple estimation of interaction strengths from observations.
View Article and Find Full Text PDFWild vertebrate populations all over the globe are in decline, with poaching being the second-most-important cause. The high poaching rate of rhinoceros may drive these species into extinction within the coming decades. Some stakeholders argue to lift the ban on international rhino horn trade to potentially benefit rhino conservation, as current interventions appear to be insufficient.
View Article and Find Full Text PDFThis study investigates the effect of water temperature on the development rate of eggs and larvae, the duration of the endogenous feeding period and its consequences for recruitment of smelt (Osmerus eperlanus) in Dutch lakes IJsselmeer and Markermeer. This study measured temperature-dependent egg and larval development rates as well as mortality rates from fertilization till the moment of absorption of the yolk-sac and from yolk-sac depletion onwards in temperature-controlled indoor experiments. Using multinomial modelling the authors found significant differences in development time of egg development stages under different temperature regimes.
View Article and Find Full Text PDFWorldwide, eutrophication is threatening lake ecosystems. To support lake management numerous eutrophication models have been developed. Diverse research questions in a wide range of lake ecosystems are addressed by these models.
View Article and Find Full Text PDFMany aquatic ecosystems have deteriorated due to human activities and their restoration is often troublesome. It is proposed here that the restoration success of deteriorated lakes critically depends on hitherto largely neglected spatial heterogeneity in nutrient loading and hydrology. A modelling approach is used to study this hypothesis by considering four lake types with contrasting nutrient loading (point versus diffuse) and hydrology (seepage versus drainage).
View Article and Find Full Text PDFInduced bank filtration (IBF) is a water abstraction technology using different natural infiltration systems for groundwater recharge, such as river banks and lake shores. It is a cost-effective pre-treatment method for drinking water production used in many regions worldwide, predominantly in urban areas. Until now, research concerning IBF has almost exclusively focussed on the purification efficiency and infiltration capacity.
View Article and Find Full Text PDFSubmerged macrophytes play a key role in north temperate shallow lakes by stabilizing clear-water conditions. Eutrophication has resulted in macrophyte loss and shifts to turbid conditions in many lakes. Considerable efforts have been devoted to shallow lake restoration in many countries, but long-term success depends on a stable recovery of submerged macrophytes.
View Article and Find Full Text PDFFreshwater shallow lake ecosystems provide valuable ecological services to human beings. However, these systems are subject to severe contamination from anthropogenic sources. Per- and polyfluoroalkyl substances (PFASs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulphonate (PFOS), are among the contaminants that have received substantial attention, primarily due to abundant applications, environment persistence, and potential threats to ecological and human health.
View Article and Find Full Text PDFOngoing eutrophication frequently causes toxic phytoplankton blooms. This induces huge worldwide challenges for drinking water quality, food security and public health. Of crucial importance in avoiding and reducing blooms is to determine the maximum nutrient load ecosystems can absorb, while remaining in a good ecological state.
View Article and Find Full Text PDFShallow lakes can switch suddenly from a turbid situation with high concentrations of phytoplankton and other suspended solids to a vegetated state with clear water, and vice versa. These alternative stable states may have a substantial impact on the fate of hydrophobic organic compounds (HOCs). Models that are fit to simulate impacts from these complex interactions are scarce.
View Article and Find Full Text PDFSubmerged macrophytes play an important role in maintaining good water quality in shallow lakes. Yet extensive stands easily interfere with various services provided by these lakes, and harvesting is increasingly applied as a management measure. Because shallow lakes may possess alternative stable states over a wide range of environmental conditions, designing a successful mowing strategy is challenging, given the important role of macrophytes in stabilizing the clear water state.
View Article and Find Full Text PDFQuantitative evidence of sudden shifts in ecological structure and function in large shallow lakes is rare, even though they provide essential benefits to society. Such 'regime shifts' can be driven by human activities which degrade ecological stability including water level control (WLC) and nutrient loading. Interactions between WLC and nutrient loading on the long-term dynamics of shallow lake ecosystems are, however, often overlooked and largely underestimated, which has hampered the effectiveness of lake management.
View Article and Find Full Text PDFMillions of people rely on the ecosystem services provided by coral reefs, but sustaining these benefits requires an understanding of how reefs and their biotic communities are affected by local human-induced disturbances and global climate change. Ecosystem-based management that explicitly considers the indirect and cumulative effects of multiple disturbances has been recommended and adopted in policies in many places around the globe. Ecosystem models give insight into complex reef dynamics and their responses to multiple disturbances and are useful tools to support planning and implementation of ecosystem-based management.
View Article and Find Full Text PDFA principal aim of ecologists is to identify critical levels of environmental change beyond which ecosystems undergo radical shifts in their functioning. Both food-web theory and alternative stable states theory provide fundamental clues to mechanisms conferring stability to natural systems. Yet, it is unclear how the concept of food-web stability is associated with the resilience of ecosystems susceptible to regime change.
View Article and Find Full Text PDFDominance of free-floating plants poses a threat to biodiversity in many freshwater ecosystems. Here we propose a theoretical framework to understand this dominance, by modeling the competition for light and nutrients in a layered community of floating and submerged plants. The model shows that at high supply of light and nutrients, floating plants always dominate due to their primacy for light, even when submerged plants have lower minimal resource requirements.
View Article and Find Full Text PDFSelf-organized complexity at multiple spatial scales is a distinctive characteristic of biological systems. Yet, little is known about how different self-organizing processes operating at different spatial scales interact to determine ecosystem functioning. Here we show that the interplay between self-organizing processes at individual and ecosystem level is a key determinant of the functioning and resilience of mussel beds.
View Article and Find Full Text PDFThe current changes in our climate will likely have far-reaching consequences for aquatic ecosystems. These changes in the climate, however, do not act alone, and are often accompanied by additional stressors such as eutrophication. Both global warming and eutrophication have been shown to affect the timing and magnitude of phytoplankton blooms.
View Article and Find Full Text PDFPositive and negative interactions within and between species may occur simultaneously, with the net effect depending on population densities. For instance, at low densities plants may ameliorate stress, while competition for resources dominates at higher densities. Here, we propose a simple two-species model in which con- and heterospecifics have a positive effect on per capita growth rate at low densities, while negative interactions dominate at high densities.
View Article and Find Full Text PDFPeatlands are important sinks for atmospheric carbon (C), yet the role of plant functional types (PFTs) for C sequestration under climatic perturbations is still unclear. A plant-removal experiment was used to study the importance of vascular PFTs for the net ecosystem CO2 exchange (NEE) during (i.e.
View Article and Find Full Text PDFComplex ecological models are used to predict the consequences of anticipated future changes in climate and nutrient loading for lake water quality. These models may, however, suffer from nonuniqueness in that various sets of model parameter values may yield equally satisfactory representations of the system being modeled, but when applied in future scenarios these sets of values may divert considerably in their simulated outcomes. Compilation of an ensemble of model runs allows us to account for simulation variability arising from model parameter estimates.
View Article and Find Full Text PDFNile perch (Lates niloticus) suddenly invaded Lake Victoria between 1979 and 1987, 25 years after its introduction in the Ugandan side of the lake. Nile perch then replaced the native fish diversity and irreversibly altered the ecosystem and its role to lakeshore societies: it is now a prised export product that supports millions of livelihoods. The delay in the Nile perch boom led to a hunt for triggers of the sudden boom and generated several hypotheses regarding its growth at low abundances--all hypotheses having important implications for the management of Nile perch stocks.
View Article and Find Full Text PDFWe developed the individual-based model PHYLLOSIM to explain observed variation in the size of bacterial clusters on plant leaf surfaces (the phyllosphere). Specifically, we tested how different 'waterscapes' impacted the diffusion of nutrients from the leaf interior to the surface and the growth of individual bacteria on these nutrients. In the 'null' model or more complex 'patchy' models, the surface was covered with a continuous water film or with water drops of equal or different volumes, respectively.
View Article and Find Full Text PDF