Publications by authors named "Wold E"

Flying insects are thought to achieve energy-efficient flapping flight by storing and releasing elastic energy in their muscles, tendons, and thorax. However, 'spring-wing' flight systems consisting of elastic elements coupled to nonlinear, unsteady aerodynamic forces present possible challenges to generating stable and responsive wing motion. The energetic efficiency from resonance in insect flight is tied to the Weis-Fogh number (), which is the ratio of peak inertial force to aerodynamic force.

View Article and Find Full Text PDF

The evolution of flight in an early winged insect ancestral lineage is recognized as a key adaptation explaining the unparalleled success and diversification of insects. Subsequent transitions and modifications to flight machinery, including secondary reductions and losses, also play a central role in shaping the impacts of insects on broadscale geographic and ecological processes and patterns in the present and future. Given the importance of insect flight, there has been a centuries-long history of research and debate on the evolutionary origins and biological mechanisms of flight.

View Article and Find Full Text PDF

An insect's wingbeat frequency is a critical determinant of its flight performance and varies by multiple orders of magnitude across Insecta. Despite potential energetic benefits for an insect that matches its wingbeat frequency to its resonant frequency, recent work has shown that moths may operate off their resonant peak. We hypothesized that across species, wingbeat frequency scales with resonance frequency to maintain favourable energetics, but with an offset in species that use frequency modulation as a means of flight control.

View Article and Find Full Text PDF
Article Synopsis
  • Dimensionless numbers help compare how an organism's structure relates to its performance, and while common in aerodynamics, few connect biomechanics to environmental forces during insect flight.
  • The Weis-Fogh number, N, is introduced as a key dimensionless number for flapping insect flight, measuring the ratio of peak inertial to aerodynamic torque generated during wingbeats.
  • The text explores how N varies among insects, highlighting its significance in understanding tradeoffs in aerodynamic efficiency, stability, and responsiveness, making it a valuable tool for studying biomechanics in insect flight.
View Article and Find Full Text PDF
Article Synopsis
  • Insects have two main ways to fly: some use their muscles at the same time as their wings move, while others use special muscles that can keep moving even when not activated by their brain.
  • Scientists discovered that even though many insects show this second way of flying, it likely only evolved once and then sometimes went back to the first way.
  • By studying these flight types, researchers created a tiny robot that can switch between these flying styles, helping us understand how insects changed their flight over time.
View Article and Find Full Text PDF

The serotonin 5-HT receptor (5-HTR) and 5-HTR localize to the brain and share overlapping signal transduction facets that contribute to their roles in cognition, mood, learning, and memory. Achieving selective targeting of these receptors is challenged by the similarity in their 5-HT orthosteric binding pockets. A fragment-based discovery approach was employed to design and synthesize novel oleamide analogues as selective 5-HTR or dual 5-HTR/5-HTR positive allosteric modulators (PAMs).

View Article and Find Full Text PDF

Muscles act through elastic and dissipative elements to mediate movement, which can introduce dissipation and filtering which are important for energetics and control. The high power requirements of flapping flight can be reduced by an insect's exoskeleton, which acts as a spring with frequency-independent material properties under purely sinusoidal deformation. However, this purely sinusoidal dynamic regime does not encompass the asymmetric wing strokes of many insects or non-periodic deformations induced by external perturbations.

View Article and Find Full Text PDF

Flying insects have elastic materials within their exoskeletons that could reduce the energetic cost of flight if their wingbeat frequency is matched to a mechanical resonance frequency. Flapping at resonance may be essential across flying insects because of the power demands of small-scale flapping flight. However, building up large-amplitude resonant wingbeats over many wingstrokes may be detrimental for control if the total mechanical energy in the spring-wing system exceeds the per-cycle work capacity of the flight musculature.

View Article and Find Full Text PDF

Bromodomain-containing protein 4 (BRD4) is an emerging epigenetic drug target for intractable inflammatory disorders. The lack of highly selective inhibitors among BRD4 family members has stalled the collective understanding of this critical system and the progress toward clinical development of effective therapeutics. Here we report the discovery of a potent BRD4 bromodomain 1 (BD1)-selective inhibitor ZL0590 () targeting a unique, previously unreported binding site, while exhibiting significant anti-inflammatory activities and .

View Article and Find Full Text PDF

Canonical WNT signaling is an important developmental pathway that has attracted increased attention for anticancer drug discovery. From the production and secretion of WNT ligands, their binding to membrane receptors, and the β-catenin destruction complex to the expansive β-catenin transcriptional complex, multiple components have been investigated as drug targets to modulate WNT signaling. Significant progress in developing WNT inhibitors such as porcupine inhibitors, tankyrase inhibitors, β-catenin/coactivators, protein-protein interaction inhibitors, casein kinase modulators, DVL inhibitors, and dCTPP1 inhibitors has been made, with several candidates (, LGK-974, PRI-724, and ETC-159) in human clinical trials.

View Article and Find Full Text PDF

Muscles are composite structures. The protein filaments responsible for force production are bundled within fluid-filled cells, and these cells are wrapped in ordered sleeves of fibrous collagen. Recent models suggest that the mechanical interaction between the intracellular fluid and extracellular collagen is essential to force production in passive skeletal muscle, allowing the material stiffness of extracellular collagen to contribute to passive muscle force at physiologically relevant muscle lengths.

View Article and Find Full Text PDF

Human adenoviruses (HAdVs) display a wide range of tissue tropism and can cause an array of symptoms from mild respiratory illnesses to disseminated and life-threatening infections in immunocompromised individuals. However, no antiviral drug has been approved specifically for the treatment of HAdV infections. Herein, we report our continued efforts to optimize salicylamide derivatives and discover compound (JMX0493) as a potent inhibitor of HAdV infection.

View Article and Find Full Text PDF

This study sought to determine breast arterial calcification (BAC) prevalence in a primary care setting and its potential use in guiding further cardiovascular workup. A radiologist reviewed 282 consecutive mammograms. Characteristics of BAC-positive and negative women were compared.

View Article and Find Full Text PDF

The sigma-1 (σ) receptor, an enigmatic protein originally classified as an opioid receptor subtype, is now understood to possess unique structural and functional features of its own and play critical roles to widely impact signaling transduction by interacting with receptors, ion channels, lipids, and kinases. The σ receptor is implicated in modulating learning, memory, emotion, sensory systems, neuronal development, and cognition and accordingly is now an actively pursued drug target for various neurological and neuropsychiatric disorders. Evaluation of the five selective σ receptor drug candidates (pridopidine, ANAVEX2-73, SA4503, S1RA, and T-817MA) that have entered clinical trials has shown that reaching clinical approval remains an evasive and important goal.

View Article and Find Full Text PDF

Smallpox and monkeypox pose severe threats to human health. Other orthopoxviruses are comparably virulent in their natural hosts, including ectromelia, the cause of mousepox. Disease severity is linked to an array of immunomodulatory proteins including the B22 family, which has homologs in all pathogenic orthopoxviruses but not attenuated vaccine strains.

View Article and Find Full Text PDF

Targeting the serotonin (5-HT) 5-HT receptor (5-HTR) allosteric site to potentiate endogenous 5-HT tone may provide novel therapeutics to alleviate the impact of costly, chronic diseases such as obesity and substance use disorders. Expanding upon our recently described 5-HTR-positive allosteric modulators (PAMs) based on the 4-alkylpiperidine-2-carboxamide scaffold, we optimized the undecyl moiety at the 4-position with variations of cyclohexyl- or phenyl-containing fragments to reduce rotatable bonds and lipophilicity. Compound (CTW0415) was discovered as a 5-HTR PAM with improved pharmacokinetics and reduced off-target interactions relative to our previous series of molecules.

View Article and Find Full Text PDF

Bromodomain-containing protein 4 (BRD4) represents a promising drug target for anti-inflammatory therapeutics. Herein, we report the design, synthesis, and pharmacological evaluation of novel chromone derivatives via scaffold hopping to discover a new class of orally bioavailable BRD4-selective inhibitors. Two potent BRD4 bromodomain 1 (BD1)-selective inhibitors (ZL0513) and (ZL0516) have been discovered with high binding affinity (IC values of 67-84 nM) and good selectivity over other BRD family proteins and distant BD-containing proteins.

View Article and Find Full Text PDF

Purpose: The purpose of the present study was to test if caffeine ingestion affects rifle shooting accuracy in trained shooters.

Methods: Twenty trained shooters performed 4 shooting tests in a randomized, double-blinded, placebo controlled crossover design; 2 identical tests after placebo ingestion and 2 after ingestion of 300 mg caffeine. The tests consisted of 30 shots in prone position and 30 in standing position on a 10 ring electronic target, on a distance of 50 metres, without any time limit, at rest.

View Article and Find Full Text PDF

During extended bouts of exercise, muscle can increase in volume by as much as 20% as vascular fluid moves into the tissue. Recent findings suggest that the fluid content of muscle can influence the mechanics of force production; however, the extent to which natural volume fluctuations should be expected to influence muscle mechanics remains unclear. Here, using osmotic perturbations of bullfrog muscle, we explored the impacts of physiologically relevant volume fluctuations on a fundamental property of muscle: passive force production.

View Article and Find Full Text PDF

Serotonin (5-HT) 5-HT2C receptor (5-HT2CR) is recognized as a critical mediator of diseaserelated pathways and behaviors based upon actions in the central nervous system (CNS). Since 5-HT2CR is a class A G protein-coupled receptor (GPCR), drug discovery efforts have traditionally pursued the activation of the receptor through synthetic ligands with agonists proposed for the treatment of obesity, substance use disorders and impulse control disorders while antagonists may add value for the treatment of anxiety, depression and schizophrenia. The most significant agonist discovery to date is the FDAapproved anti-obesity medication lorcaserin.

View Article and Find Full Text PDF

In an effort to develop novel Bax activators for breast cancer treatment, a series of diverse analogues have been designed and synthesized based on lead compound SMBA1 through several strategies, including introducing various alkylamino side chains to have a deeper access to S184 pocket, replacing carbon atoms with nitrogen, and reducing the nitro group of 9H-fluorene scaffold. Compounds 14 (CYD-2-11) and 49 (CYD-4-61) have been identified to exhibit significantly improved antiproliferative activity compared to SMBA1, with IC values of 3.22 μM and 0.

View Article and Find Full Text PDF

Chemical reactions that can proceed in living systems while not interfering with native biochemical processes are collectively referred to as bioorthogonal chemistry. Selectivity, efficiency, and aqueous compatibility are three significant characteristics of an ideal bioorthogonal reaction. To date, the specialized bioorthogonal reactions that have been reported include: Cu (I)-catalyzed [3 + 2] azido- alkyne cycloadditions (CuAAC), strain-promoted [3 + 2] azide-alkyne cycloadditions (SPAAC), Staudinger ligation, photo-click 1,3-dipolar cycloadditions, strain-promoted alkyne-nitrone cycloadditions (SPANC), transition metal catalysis (TMC), and inverse electron demand Diels-Alder (IEDDA).

View Article and Find Full Text PDF

Although G protein-coupled receptors (GPCRs) are recognized as pivotal drug targets involved in multiple physiological and pathological processes, the majority of GPCRs including orphan GPCRs (oGPCRs) are unexploited. GPR88, a brain-specific oGPCR with particularly robust expression in the striatum, regulates diverse brain and behavioral functions, including cognition, mood, movement control, and reward-based learning, and is thus emerging as a novel drug target for central nervous system disorders including schizophrenia, Parkinson's disease, anxiety, and addiction. Nevertheless, no effective GPR88 synthetic ligands have yet entered into clinical trials, and GPR88 endogenous ligands remain unknown.

View Article and Find Full Text PDF

G-protein-coupled receptors (GPCRs) have been tractable drug targets for decades with over one-third of currently marketed drugs targeting GPCRs. Of these, the class A GPCR superfamily is highly represented, and continued drug discovery for this family of receptors may provide novel therapeutics for a vast range of diseases. GPCR allosteric modulation is an innovative targeting approach that broadens the available small molecule toolbox and is proving to be a viable drug discovery strategy, as evidenced by recent FDA approvals and clinical trials.

View Article and Find Full Text PDF