Publications by authors named "Wojtasek H"

Inhibition of tyrosinase by gallic acid, epigallocatechin, and epigallocatechin-3-gallate has been recently described in several publications. However, oxidation of these compounds by this enzyme was demonstrated long time ago. Gallic acid also reduced tyrosinase-generated o-quinones.

View Article and Find Full Text PDF

Lactoperoxidase was previously used as a model enzyme to test the inhibitory activity of selenium analogs of anti-thyroid drugs with 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) as a substrate. Peroxidases oxidize ABTS to a metastable radical ABTS, which is readily reduced by many antioxidants, including thiol-containing compounds, and it has been used for decades to measure antioxidant activity in biological samples. We showed that anti-thyroid drugs 6-n-propyl-2-thiouracil, methimazole, and selenium analogs of methimazole also reduced it rapidly.

View Article and Find Full Text PDF

Baicalein (5,6,7-trihydroxyflavone) has been previously described as an inhibitor of tyrosinase (Guo et al. Int. J.

View Article and Find Full Text PDF

Rifampicin has been previously described as an inhibitor of tyrosinase (Chai et al., Int. J.

View Article and Find Full Text PDF

A review article has been published recently (, 2021, , 22159-22198) describing flavonoids as inhibitors of tyrosinase. However, many compounds included in this review have been previously shown to act as substrates of this enzymes or antioxidants reducing tyrosinase-generated -quinones. Products of their oxidation absorb light in a range different than dopachrome, the oxidation product of l-tyrosine or l-dopa, whose concentration is measured spectrophotometrically in the standard enzymatic assay to monitor the activity of this enzyme.

View Article and Find Full Text PDF

Quercetin was described as an inhibitor of tyrosinase in an article published in Food Research International. However, it was firmly established in the literature before that this compound was a substrate of this enzyme and an antioxidant reducing tyrosinase-generated o-quinones.

View Article and Find Full Text PDF

Gallic acid and hispidin have been previously described by us as inhibitors of horseradish peroxidase (Benarous, K., Benali, F. Z.

View Article and Find Full Text PDF

2,3-Butanediacetal derivatives were used for the stereoselective synthesis of unsymmetrically substituted -epoxides. The procedure was applied for the preparation of both enantiomers of disparlure and monachalure, the components of the sex pheromones of the gypsy moth () and the nun moth () using methyl (2,3,5,6)-3-ethylsulfanylcarbonyl-5,6-dimethoxy-5,6-dimethyl-1,4-dioxane-2-carboxylate as the starting material.

View Article and Find Full Text PDF

p-Diphenols, such as homogentisic acid, gentisic acid, etamsylate, and calcium dobesilate, interfere with diagnostic tests utilizing the Trinder reaction but the mechanisms of these effects are not fully understood. We observed substantial differences both in oxidation of p-diphenols by horseradish peroxidase and their influence on oxidation of 4-aminoantipyrine and various phenolic substrates. Homogentisic acid was rapidly oxidized by the enzyme and completely blocked chromophore formation.

View Article and Find Full Text PDF

Juvenile hormones (JHs) regulate important processes in insects, such as postembryonic development and reproduction. In the hemolymph of Lepidoptera, these lipophilic sesquiterpenic hormones are transported from their site of synthesis to target tissues by high affinity carriers, the juvenile hormone binding proteins (JHBPs). Lepidopteran JHBPs belong to a recently uncovered, yet very ancient family of proteins sharing a common lipid fold (TULIP domain) and involved in shuttling various lipid ligands.

View Article and Find Full Text PDF

Background: A number of compounds, including ascorbic acid, catecholamines, flavonoids, p-diphenols and hydrazine derivatives have been reported to interfere with peroxidase-based medical diagnostic tests (Trinder reaction) but the mechanisms of these effects have not been fully elucidated.

Methods: Reactions of bovine myeloperoxidase with o-dianisidine, bovine lactoperoxidase with ABTS and horseradish peroxidase with 4-aminoantipyrine/phenol in the presence of carbidopa, an anti-Parkinsonian drug, and other catechols, including l-dopa, were monitored spectrophotometrically and by measuring hydrogen peroxide consumption.

Results: Chromophore formation in all three enzyme/substrate systems was blocked in the presence of carbidopa and other catechols.

View Article and Find Full Text PDF

Flavonoids are important food components with antioxidant properties and many of them have been described as tyrosinase inhibitors. Oxidation of quercetin, kaempferol, morin, catechin, and naringenin by mushroom tyrosinase and their influence on the oxidation of l-dopa and l-tyrosine was studied. Reaction rates measured spectrophotometrically and by oxygen consumption differed substantially.

View Article and Find Full Text PDF

Incubation of the Colorado potato beetle aggregation pheromone, (S)-1,3-dihydroxy-3,7-dimethyl-6-octen-2-one, with antennal or leg extracts from this beetle gave 6-methyl-5-hepten-2-one as the major product. This ketone was used as a substrate in a stereoselective synthesis of the pheromone. It was attached to the butanediacetal of glycolic acid with good stereoselectivity and the desired isomer was further enriched by purification of the product of this reaction on silica gel.

View Article and Find Full Text PDF

A potential anti-melanoma prodrug containing a phenolic activator, a hydrazine linker, and a nitrogen mustard effector - (N-{4-[bis-(2-chloroethyl)amino]benzoyl}-N'-(4-hydroxybenzyl)hydrazine) has been synthesized in seven steps. Spectrophotometric measurements of its oxidation by tyrosinase showed a rapid increase of absorbance at 337 nm. HPLC analysis demonstrated that two major products were formed.

View Article and Find Full Text PDF

Oxidation of the anti-Parkinsonian agent carbidopa by tyrosinase was investigated. The products of this reaction were identified as 3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid and 6,7-dihydroxy-3-methylcinnoline. These results demonstrate that after oxidation of the catechol moiety to an o-quinone either a redox exchange with the hydrazine group or a cyclization reaction occur.

View Article and Find Full Text PDF

The interaction of tyrosinase with the anticancer drug procarbazine has been investigated. In the presence of the enzyme alone no oxidation of this dialkylhydrazine above the background level was observed. However, when phenolic substrates (4-tert-butylcatechol or N-acetyl-l-tyrosine) were included in the reaction mixture, procarbazine was rapidly degraded.

View Article and Find Full Text PDF

We have investigated oxidation of amino acid phenylhydrazides by mushroom tyrosinase in the presence of 4-tert-butylcatechol and N-acetyl-L-tyrosine. Spectrophotometric measurements showed gradual disappearance of 4-tert-butyl-o-benzoquinone, generated by oxidation of 4-tert-butylcatechol with sodium periodate, after addition of amino acid phenylhydrazides. However, the presence of the phenylhydrazides did not influence the concentration of 4-tert-butyl-o-benzoquinone formed during enzymatic oxidation.

View Article and Find Full Text PDF

3-Amino-L-tyrosine was found to be a substrate of mushroom tyrosinase, contrary to what had previously been reported in the literature. A series of amino derivatives of benzoic acid were tested as substrates and inhibitors of the enzyme. 3-Amino-4-hydroxybenzoic acid, 4-amino-3-hydroxybenzoic acid and 3,4-diaminobenzoic acid were oxidized by this enzyme, as previously reported for Neurospora crassa tyrosinase, but 4-aminobenzoic acid and 3-aminobenzoic acid were not.

View Article and Find Full Text PDF

The degradation of the 3'-untranslated regions (UTRs) of vitellogenin, cyanoprotein alpha, and cyanoprotein beta from the bean bug, Riptortus clavatus, was analyzed in vitro. The degradation pattern was similar for all three RNAs, with a high degradation rate in non-diapausing adult insects and no degradation in the fifth instar nymphs and in diapausing adults, and was not correlated with the expression levels of these three proteins. Proteins binding to the 3'-UTRs were detected in polysomal and cytosolic extracts.

View Article and Find Full Text PDF

Amino-(3,4-dihydroxyphenyl)methyl phosphonic acid, the phosphonic analog of 3,4-dihydroxyphenylglycine, had been previously reported as a potent inhibitor of tyrosinase. The mechanism of the apparent enzyme inhibition by this compound has now been established. Amino-(3,4-dihydroxyphenyl)methyl phosphonic acid turned out to be a substrate and was oxidized to o-quinone, which evolved to a final product identified as 3,4-dihydroxybenzaldehyde, the same as for 3,4-dihydroxyphenylglycine.

View Article and Find Full Text PDF

The pale-brown chafer, Phyllopertha diversa, utilizes an unusual alkaloid, 1,3-dimethyl-2,4-(1H,3H)-quinazolinedione, as its sex pheromone. This compound is rapidly degraded in vitro by the antennal protein extracts from this scarab beetle. Demethylation at the N-1 position and hydroxylation of the aromatic ring have been identified as the major catabolic pathways.

View Article and Find Full Text PDF

The pheromone-binding protein (PBP) from Bombyx mori was expressed in Escherichia coli periplasm. It specifically bound radiolabeled bombykol, the natural pheromone for this species. It appeared as a single band both in native and SDS-polyacrylamide gel electrophoresis and was also homogeneous in most chromatographic systems.

View Article and Find Full Text PDF

Wehave identified, cloned, and characterized two odorant binding proteins from the pale brown chafer, Phyllopertha diversa. One of the proteins (OBP1, 116 amino acids long) showed high amino acid identity (>90%) to two previously identified PBPs from scarab beetles. The second protein (OBP2) showed limited sequence similarity to lepidopteran and dipteran OBPs, but contained only 133 amino acids.

View Article and Find Full Text PDF