Genetic mechanisms of blood pressure (BP) regulation remain poorly defined. Using kidney-specific epigenomic annotations and 3D genome information we generated and validated gene expression prediction models for the purpose of transcriptome-wide association studies in 700 human kidneys. We identified 889 kidney genes associated with BP of which 399 were prioritised as contributors to BP regulation.
View Article and Find Full Text PDFBackground: The growing size of the end stage renal disease (ESRD) population highlights the need for effective dialysis access. Exhausted native vascular access options have led to increased use of catheters and prosthetic shunts, which are both associated with high risks of access failure and infection. Emerging alternatives include tissue-engineered vascular grafts (TEVG).
View Article and Find Full Text PDFCystic fibrosis is an autosomal progressive disease affecting the lung, pancreas, and liver. Some patients develop end-stage respiratory and liver failure. For such patients, combined lung-liver transplantation remains the only therapeutic option.
View Article and Find Full Text PDFThe kidney is an organ of key relevance to blood pressure (BP) regulation, hypertension and antihypertensive treatment. However, genetically mediated renal mechanisms underlying susceptibility to hypertension remain poorly understood. We integrated genotype, gene expression, alternative splicing and DNA methylation profiles of up to 430 human kidneys to characterize the effects of BP index variants from genome-wide association studies (GWASs) on renal transcriptome and epigenome.
View Article and Find Full Text PDFAims: Angiotensin-converting enzyme 2 (ACE2) is the cellular entry point for severe acute respiratory syndrome coronavirus (SARS-CoV-2)-the cause of coronavirus disease 2019 (COVID-19). However, the effect of renin-angiotensin system (RAS)-inhibition on ACE2 expression in human tissues of key relevance to blood pressure regulation and COVID-19 infection has not previously been reported.
Methods And Results: We examined how hypertension, its major metabolic co-phenotypes, and antihypertensive medications relate to ACE2 renal expression using information from up to 436 patients whose kidney transcriptomes were characterized by RNA-sequencing.
Background: Biliary cancer, comprising cholangio- and gallbladder carcinomas, is associated with high mortality due to asymptomatic disease onset and resulting late diagnosis. Currently, no robust diagnostic biomarker is clinically available. Therefore, we explored the feasibility of extracellular vesicles (EVs) as a liquid biopsy tool for biliary cancer screening and hepatobiliary cancer differentiation.
View Article and Find Full Text PDFRenal ischemia-reperfusion injury (IRI) induces local inflammation leading to kidney damage. Since pentoxifylline (PTX) and steroids have distinct immunomodulatory properties, we aimed to evaluate for the first time their combined use in IRI-induced acute kidney injury (AKI) and chronic kidney disease (CKD) in rats. In two experiments, PTX (100 mg/kg body weight subcutaneously) was administered 90 min prior to renal IRI or/and methylprednisolone (MP; 100 mg/kg body weight intramuscularly) was infused 60 min after reperfusion of a solitary kidney (AKI model: 45 min ischemia, 48 male Sprague-Dawley rats) or one kidney with excision of contralateral kidney 2 weeks later (CKD model: 90 min ischemia, 38 rats).
View Article and Find Full Text PDFBackground: Acute myocardial infarction (MI) leads to an irreversible loss of proper cardiac function. Application of stem cell therapy is an attractive option for MI treatment. Adipose tissue has proven to serve as a rich source of stem cells (ADSCs).
View Article and Find Full Text PDFAn arteriovenous fistula is the current gold standard for chronic hemodialysis access. Tunneled catheters or synthetic grafts have poorer outcomes and much higher risks of infection. This report presents the first clinical use of a completely biological, allogeneic, nonliving, and human tissue-engineered vascular graft.
View Article and Find Full Text PDFSince Scribner described the first prosthetic chronic dialysis shunt in 1961, the surgical techniques and strategies to maintain vascular access have improved dramatically. Today, hundreds of thousands of patients worldwide are treated with some combination of native vein fistula, synthetic vascular graft, or synthetic semipermanent catheter. Despite significantly lower efficacy compared with autologous fistulae, the basic materials used for synthetic shunts and catheters have evolved surprisingly slowly.
View Article and Find Full Text PDFPreviously we reported on the mid- to long-term follow-up in the first clinical trial to use a completely autologous tissue-engineered graft in the high pressure circulation. In these early studies, living grafts were built from autologous fibroblasts and endothelial cells obtained from small skin and vein biopsies. The graft was assembled using a technique called tissue-engineering by self-assembly (TESA), where robust conduits were grown without support from exogenous biomaterials or synthetic scaffolding.
View Article and Find Full Text PDFBackground: Application of a tissue-engineered vascular graft for small-diameter vascular reconstruction has been a long awaited and much anticipated advance for vascular surgery. We report results after a minimum of 6 months of follow-up for the first ten patients implanted with a completely biological and autologous tissue-engineered vascular graft.
Methods: Ten patients with end-stage renal disease who had been receiving haemodialysis through an access graft that had a high probability of failure, and had had at least one previous access failure, were enrolled from centres in Argentina and Poland between September, 2004, and April, 2007.
We have previously reported the initial clinical feasibility with our small diameter tissue engineered blood vessel (TEBV). Here we present in vitro results of the mechanical properties of the TEBVs of the first 25 patients enrolled in an arterio-venous (A-V) shunt safety trial, and compare these properties with those of risk-matched human vein and artery. TEBV average burst pressures (3490+/-892 mmHg, n=230) were higher than native saphenous vein (SV) (1599+/-877 mmHg, n=7), and not significantly different from native internal mammary artery (IMA) (3196+/-1264 mmHg, n=16).
View Article and Find Full Text PDFUnlabelled: BACKGROUND/AIMS;Higher blood pressure (BP) in winter has been documented in healthy and hypertensive adults. It may potentially contribute to the observed excess winter cardiovascular mortality in the general population. The aim of the study was to assess whether BP varies similarly among patients with chronic renal failure on haemodialysis treatment, who present an increased risk of cardiovascular death.
View Article and Find Full Text PDF