IEEE Trans Neural Syst Rehabil Eng
December 2005
We have developed a robotic device (the "rat stepper") for evaluating and training locomotor function of spinal cord injured rodents. This paper provides a detailed description of the device design and a characterization of its robotic performance capabilities.
View Article and Find Full Text PDFWe compared the bipedal hindlimb stepping ability of untrained and trained (step-trained 6 min/day) spinal rats (mid-thoracic spinal cord transection at post-natal day 5) at different levels of body weight support on a treadmill over a 40-day period, starting at 69 days of age. A robotic device provided precise levels of body weight support and recorded hindlimb movement. We assessed stepping ability using: (1) step quantity determined from the measured hindlimb movement, (2) ordinal scales of paw placement, weight-bearing, and limb flexion, and (3) the lowest level of body weight support at which stepping was maintained.
View Article and Find Full Text PDFWe have developed a robotic device (e.g. the rat stepper) that can be used to impose programmed forces on the hindlimbs of rats during stepping.
View Article and Find Full Text PDFWe have developed a robotic device that can record the trajectory of the hindlimb movements in rats. The robotic device can also impose programmed forces on the limbs during stepping. In the present paper we describe experiments using this robotic device, i.
View Article and Find Full Text PDF