A fluid dynamics model has been developed to describe flow behavior in a lab-scale chromatographic system dedicated for protein processing. The case study included a detailed analysis of elution pattern of a protein, which was a monoclonal antibody, glycerol, and their mixtures in aqueous solutions. Glycerol solutions mimicked viscous environment of the concentrated protein solutions.
View Article and Find Full Text PDFA model-based approach for scaling up chromatographic capture step was developed. The purification of human basic fibroblast growth factor protein 2 (FGF2) from an E. coli homogenate on a cation exchange resin was selected as a case study.
View Article and Find Full Text PDFExperimental and theoretical analysis of deformation of band profiles in extra-column volumes (ECV) was performed, and its influence on the retention pattern of proteins in a small chromatographic column was quantified. Several macromolecule and small-molecule compounds, and their mixtures were eluted from a chromatographic system in the absence and presence of the column. The peak deformation in ECV was attributed to non-uniform velocity distribution in the radial direction in connecting capillaries.
View Article and Find Full Text PDFThe retention behavior of polyethylene glycol (PEG) on different types of hydrophobic interaction chromatography (HIC) resins containing butyl, octyl, and phenyl ligands was analyzed. An incomplete elution or splitting of the polymer peak into two parts was observed, where the first one was eluted at the dead time of the column, whereas the second one was strongly retained. The phenomenon was attributed to conformation changes of the polymer upon its adsorption on hydrophobic surface.
View Article and Find Full Text PDFAn efficient mathematical tool for the design and scaling up of protein chromatography is suggested, in which the model parameters can be determined quickly over a wide operating space without large material investments. The design method is based on mathematical modelling of column dynamics and moment analysis. The accuracy of the dynamic models that are most frequently used for simulations of chromatographic processes is analyzed, and possible errors that can be generated using the moment analysis are indicated.
View Article and Find Full Text PDF