Publications by authors named "Wojciech I Dzik"

Two novel κ-,-pyridine bridged [FeFe]-Hase mimics ( and ) have been prepared and are shown to function as efficient molecular catalysts for electrocatalytic proton reduction. The elemental and structural composition of the complexes are confirmed by NMR and IR spectroscopy, high-resolution mass spectrometry and single-crystal X-ray diffraction. Electrochemical investigations reveal that the complexes reduce protons at their first reduction potential, resulting in the lowest overpotential (120 mV) ever reported for [FeFe]-Hase mimics in proton reduction catalysis when mild acid (phenol) is used as proton source.

View Article and Find Full Text PDF

We report the coordination chemistry of indole based tripodal tetraphosphine ligands to iron(II), cobalt(II) and nickel(II). These complexes are formed by simple synthetic protocols and were characterized by a combination of spectroscopic techniques and single-crystal X-ray analysis. The molecular structures as determined by X-ray diffraction show that the geometry of the nickel and cobalt complexes are distorted trigonal bipyramidal.

View Article and Find Full Text PDF

The tripodal, tetradentate tris(1-(diphenylphosphanyl)-3-methyl-1H-indol-2-yl)phosphane PP -ligand 1 stabilizes Ru in the Ru , Ru , and Ru oxidation states. The octahedral [(PP )Ru (Cl) ] (2), distorted trigonal bipyramidal [(PP )Ru (Cl)] (3), and trigonal bipyramidal [(PP )Ru (N )] (4) complexes were isolated and characterized by single-crystal X-ray diffraction, NMR, EPR, IR, and ESI-MS. Both open-shell metalloradical Ru complex 3 and the closed-shell Ru complex 4 undergo facile (net) abstraction of a Cl atom from dichloromethane, resulting in formation of the corresponding Ru and Ru complexes 2 and 3, respectively.

View Article and Find Full Text PDF

Unprecedented regioselectivity to the branched aldehyde product in the hydroformylation of propene was attained on embedding a rhodium complex in supramolecular assembly L2, formed by coordination-driven self-assembly of tris(meta-pyridyl)phosphine and zinc(II) porpholactone. The design of cage L2 is based on the ligand-template approach, in which the ligand acts as a template for cage formation. Previously, first-generation cage L1, in which zinc(II) porphyrin units were utilized instead of porpholactones, was reported.

View Article and Find Full Text PDF

We report the synthesis of the trifluoromethyl cobalt(iii)tetraphenylporphyrinato complex [Co(TPP)CF3], which loses fluoride upon one-electron reduction and transfers a difluorocarbene moiety to n-butyl acrylate to produce the corresponding gem-difluorocyclopropane. Catalytic CF transfer from MeSiCF to n-butyl acrylate becomes possible when directly using the divalent cobalt(ii) porphyrin catalysts in the presence of NaI.

View Article and Find Full Text PDF

Finding new catalysts for the release of molecular hydrogen from methanol is of high relevance in the context of the development of sustainable energy carriers. Herein, we report that the ruthenium complex Ru(salbinapht)(CO)(PPr) {salbinapht=2-[({2'-[(2-hydroxybenzyl)amino]-[1,1'-binaphthalen]-2-yl}imino)methyl]phenolato} () catalyzes the methanol dehydrogenation reaction in the presence of base and water to yield H, formate, and carbonate. Dihydrogen is the only gas detected and a turnover frequency up to 55 h at 82 °C is reached.

View Article and Find Full Text PDF

Decarboxylative Chan-Evans-Lam-type couplings are presented as a new strategy for the regiospecific construction of diaryl and alkyl aryl ethers starting from easily available aromatic carboxylic acids. They allow converting various aromatic carboxylate salts into the corresponding aryl ethers by reaction with alkyl orthosilicates or aryl borates, under aerobic conditions in the presence of silver carbonate as the decarboxylation catalyst and copper acetate as the cross-coupling catalyst.

View Article and Find Full Text PDF

A catalyst system generated in situ from Pd(dba)(2) and tri(o-tolyl)phosphine mediates the coupling of arylboronic acids with alkyl α-bromoacetates under formation of arylacetic acid esters at unprecedented low loadings. The new protocol, which involves potassium fluoride as the base and catalytic amounts of benzyltriethylammonium bromide as a phase transfer catalyst, is uniquely effective for the synthesis of sterically demanding arylacetic acid derivatives.

View Article and Find Full Text PDF

New and conclusive evidence has been obtained for the existence of cobalt(III)-carbene radicals that have been previously proposed as the key intermediates in the underlying mechanism of metalloradical cyclopropanation by cobalt(II) complexes of porphyrins. In the absence of olefin substrates, reaction of [Co(TPP)] with ethyl styryldiazoacetate was found to generate the corresponding cobalt(III)-vinylcarbene radical that subsequently dimerizes via its γ-radical allylic resonance form to afford a dinuclear cobalt(III) porphyrin complex. X-ray structural analysis reveals a highly compact dimeric structure wherein the two metalloporphyrin units are arranged in a face-to-face fashion through a tetrasubstituted 1,5-hexadiene C(6)-bridge between the two Co(III) centers.

View Article and Find Full Text PDF

In this Forum contribution, we highlight the radical-type reactivities of one-electron-reduced Fischer-type carbenes. Carbene complexes of group 6 transition metals (Cr, Mo, and W) can be relatively easily reduced by an external reducing agent, leading to one-electron reduction of the carbene ligand moiety. This leads to the formation of "carbene-radical" ligands, showing typical radical-type reactivities.

View Article and Find Full Text PDF

The mechanism of cobalt(II)-porphyrin-mediated cyclopropanation of olefins with diazoesters was studied. The first step--reaction of cobalt(II)-porphyrin with ethyl diazoacetate (EDA)--was examined using EPR and ESI-MS techniques. EDA reacts with cobalt(II)-porphyrin to form a 1:1 Co(por)(CHCOOEt) adduct that exists as two isomers: the 'bridging carbene' C' in which the 'carbene' is bound to the metal and the pyrrolic nitrogen of the porphyrin that has a d(7) configuration on the metal, and the 'terminal carbene' C in which the 'carbene' behaves as a redox noninnocent ligand having a d(6) cobalt center and the unpaired electron residing on the 'carbene' carbon atom.

View Article and Find Full Text PDF

The mechanisms for hydrogen-atom transfer from the cyanoisopropyl radical (*)C(CH(3))(2)CN to [Co(II)(por)](*) (yielding [Co(III)(H)(por)] and CH(2)=C(CH(3))(CN); por = porphyrinato) and the insertion of vinyl acetate (CH(2)=CHOAc) into the Co-H bond of [Co(H)(por)] (giving [Co(III){CH(OAc)CH(3)}(por)]) were investigated by DFT calculations. The results are compared with experimental data. These reactions are relevant to catalytic chain transfer (CCT) in radical polymerization of olefins mediated by [Co(II)(por)](*), the formation and homolysis of organo-cobalt complexes that mediate living radical polymerization of vinyl acetate, and cobalt-mediated hydrogenation of olefins.

View Article and Find Full Text PDF

The reactivity of the paramagnetic iridium(II) complex [Ir(II)(ethene)(Me(3)tpa)](2+) (1) (Me(3)tpa=N,N,N-tris(6-methyl-2-pyridylmethyl) amine) towards the diazo compounds ethyl diazoacetate (EDA) and trimethylsilyldiazomethane (TMSDM) was investigated. The reaction with EDA gave rise to selective C--C bond formation, most likely through radical coupling of the Ir-carbenoid radical species [Ir(III){CH.(COOEt)}(MeCN)(Me(3)tpa)](2+) (7) and (the MeCN adduct of) 1, to give the tetracationic dinuclear complex [(MeCN)(Me(3)tpa)Ir(III){CH(COOEt)CH(2)CH(2)}Ir(III)(MeCN)(Me(3)tpa)](2+) (4).

View Article and Find Full Text PDF

Competitive major carbon-carbon bond activation (CCA) and minor carbon-hydrogen bond activation (CHA) channels are identified in the reaction between rhodium(II) meso-tetramesitylporphyrin [Rh(II)(tmp)] (1) and 2,2,6,6-tetramethyl-piperidine-1-oxyl (TEMPO) (2). The CCA and CHA pathways lead to formation of [Rh(III)(tmp)Me] (3) and [Rh(III)(tmp)H] (5), respectively. In the presence of excess TEMPO, [Rh(II)(tmp)] is regenerated from [Rh(III)(tmp)H] with formation of 2,2,6,6-tetramethyl-piperidine-1-ol (TEMPOH) (4) via a subsequent hydrogen atom abstraction pathway.

View Article and Find Full Text PDF

Unprecedented rhodium-catalyzed stereoselective polymerization of "carbenes" from ethyl diazoacetate (EDA) to give high molecular mass poly(ethyl 2-ylidene-acetate) is described. The mononuclear, neutral [(N,O-ligand)M(I)(cod)] (M = Rh, Ir) catalytic precursors for this reaction are characterized by (among others) single-crystal X-ray diffraction. These species mediate formation of a new type of polymers from EDA: carbon-chain polymers functionalized with a polar substituent at each carbon of the polymer backbone.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionj046c2p1u4ui10bev1vq76jtv52he2fm): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once