Strong tolerance to off-stoichiometry of group I-III-VI semiconductors in their nanocrystal form allows fabrication of multinary, alloyed structures of desired properties. In particular, alloyed Cu-In-Zn-S and Ag-In-Zn-S quantum dots (QDs) have recently emerged as efficient fluorophors, in which tailoring the composition allows tuning the optical properties, and achieving photoluminescence (PL) quantum yields approaching unity. However, poor understanding of the carrier recombination mechanism in these materials limits their further development.
View Article and Find Full Text PDFWe conducted a study on the photophysics of three indoline dyes, D102, D149, and D205, in binary mixtures of ionic liquids (IL) and polar aprotic molecular solvents (MS). Specifically, we examined the behavior of these dyes in IL-MS mixtures containing four different imidazolium-based ILs and three different polar aprotic MSs. Our investigation involved several techniques, including stationary absorption and emission measurements, as well as femtosecond transient absorption (TA) spectroscopy.
View Article and Find Full Text PDFNitroaromatics seldom fluoresce. The importance of electron-deficient (n-type) conjugates, however, has inspired a number of strategies for suppressing the emission-quenching effects of the strongly electron-withdrawing nitro group. Here, we demonstrate how such strategies yield fluorescent nitroaryl derivatives of dipyrrolonaphthyridinedione (DPND).
View Article and Find Full Text PDFWe have performed the measurements of the optical Kerr effect signal time evolution up to 4 ns for a mixture of 1-alkyl-3-methyl-imidazolium hexafluorophosphate (BMIM PF) ionic liquid and acetonitrile in the whole mole fractions range. The long delay line in our experimental setup allowed us to capture the complete reorientational dynamics of the ionic liquid. We have analysed the optical Kerr effect signal in the time and frequency domains with help of molecular dynamics simulations.
View Article and Find Full Text PDFIn the present paper, we have studied the temperature dependence of translational diffusion and solvation dynamics of a dissolved dipolar dye in the nonionic acetamide-urea deep eutectic solvent (DES), to characterize the viscosity coupling of the measured relaxation times and verify the dynamical heterogeneity aspect of this medium. Three different time-resolved experimental techniques have been employed for this purpose: fluorescence correlation spectroscopy, transient absorption (TA) spectroscopy, and optical Kerr effect (OKE) spectroscopy. The first method provides the proof that the translational diffusion time of a solute in acetamide-urea DES [CHCONH + (1 - )CO(NH), = 0.
View Article and Find Full Text PDFThe parent compound of high-[Formula: see text] superconducting cuprates is a unique Mott insulator consisting of layers of spin-[Formula: see text] ions forming a square lattice and with a record high in-plane antiferromagnetic coupling. Compounds with similar characteristics have long been searched for without success. Here, we use a combination of experimental and theoretical tools to show that commercial [Formula: see text] is an excellent cuprate analog with remarkably similar electronic parameters to [Formula: see text] but larger buckling of planes.
View Article and Find Full Text PDFWe report our study on the ultrafast dynamics of intermolecular interactions in liquid CCl4. A transient transmission time domain signal, obtained in the 40 ps delay range, exhibits beating at the difference frequency of the totally symmetric stretching vibrations of the tetrachloride isotopologues. We show that the spectra obtained as the windowed Fourier transform of different parts of the time domain signal in the range of this totally symmetric vibration, split due to the isotope effect, carry the information about the dynamics of the coherently excited, coupled molecules.
View Article and Find Full Text PDFAn extended cavity Ti:Sapphire oscillator exhibits stable operation for positively chirped pulses, while in the negative chirp regime multiple pulses are present in the cavity. At the border of these regimes automodulations, being an effect of the interplay between population inversion, laser medium polarization and the laser pulse field, appear. Two particular instabilities: period doubling and chaotic behavior of the pulse train envelope are observed.
View Article and Find Full Text PDFThe evolution of water structure during the gelation process is examined in aqueous solution of agarose using Raman spectroscopy of the O-H stretching band. The measurements have been performed at room temperature for different concentrations of agarose, which yields different dimensions of nanopores in the network of the created gel. Our results show that water confined in the gel pores exhibits evident changes in the local order of molecules in comparison with bulk water and water in the sol state.
View Article and Find Full Text PDF