We study the breakdown of Anderson localization in the one-dimensional nonlinear Klein-Gordon chain, a prototypical example of a disordered classical many-body system. A series of numerical works indicate that an initially localized wave packet spreads polynomially in time, while analytical studies rather suggest a much slower spreading. Here, we focus on the decorrelation time in equilibrium.
View Article and Find Full Text PDFWe propose a multiscale diagonalization scheme to study disordered one-dimensional chains, in particular, the transition between many-body localization (MBL) and the ergodic phase, expected to be governed by resonant spots. Our scheme focuses on the dichotomy of MBL versus validity of the eigenstate thermalization hypothesis. We show that a few natural assumptions imply that the system is localized with probability one at criticality.
View Article and Find Full Text PDFRare regions with weak disorder (Griffiths regions) have the potential to spoil localization. We describe a non-perturbative construction of local integrals of motion (LIOMs) for a weakly interacting spin chain in one dimension, under a physically reasonable assumption on the statistics of eigenvalues. We discuss ideas about the situation in higher dimensions, where one can no longer ensure that interactions involving the Griffiths regions are much smaller than the typical energy-level spacing for such regions.
View Article and Find Full Text PDFWe investigate the stability of the many-body localized phase for a system in contact with a single ergodic grain modeling a Griffiths region with low disorder. Our numerical analysis provides evidence that even a small ergodic grain consisting of only three qubits can delocalize a localized chain as soon as the localization length exceeds a critical value separating localized and extended regimes of the whole system. We present a simple theory, consistent with De Roeck and Huveneers's arguments in [Phys.
View Article and Find Full Text PDFWe derive general bounds on the linear response energy absorption rates of periodically driven many-body systems of spins or fermions on a lattice. We show that, for systems with local interactions, the energy absorption rate decays exponentially as a function of driving frequency in any number of spatial dimensions. These results imply that topological many-body states in periodically driven systems, although generally metastable, can have very long lifetimes.
View Article and Find Full Text PDFRecent advances in nonequilibrium statistical mechanics shed new light on the ratchet effect. The ratchet motion can thus be understood in terms of symmetry (breaking) considerations. We introduce an additional symmetry operation besides time reversal, that switches between two modes of operation.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
February 2004
We give a quantum version of the Jarzynski relation between the distribution of work done over a certain time-interval on a system and the difference of equilibrium free energies. The main ingredient is the identification of work depending on the quantum history of the system and the proper definition of various quantum ensembles over which the averages should be made. We also discuss a number of different regimes that have been considered by other authors and which are unified in the present set-up.
View Article and Find Full Text PDF