Publications by authors named "Wojciech Bierza"

Studies of in situ plant response and adaptation to complex environmental stresses, are crucial for understanding the mechanisms of formation and functioning of ecosystems of anthropogenically transformed habitats. We study short- and long-term responses of photosynthetic apparatus (PSA) and anti-oxidant capacity to complex abiotic stresses of common plants Calamagrostis epigejos and Solidago gigantea in semi-natural (C) and heavy metal contaminated habitats (LZ). We found significant differences in leaf pigment content between both plant species growing on LZ plots and their respective C populations.

View Article and Find Full Text PDF

The influences of airborne trace elements in urban dust on element concentrations and functional traits of Tilia cordata were examined. For the present study, the unwashed and washed leaves of T. cordata were collected to assess the concentration of metals in Katowice City, Poland, from sites of different traffic intensity and industry activity.

View Article and Find Full Text PDF

Various plant functional groups (PFGs) used in the reclamation of post-mining heaps may differ in their nutrient uptake efficiency and thus in their effect on the ecosystem development. The effect of PFGs may be additionally modified by the applied reclamation measures such as e.g.

View Article and Find Full Text PDF

As a result of phylogenomic, phylogenetic, and morphological analyses of members of the genus , four potential new glomoid spore-producing species and , a new order, Entrophosporales, with one family, Entrophosporaceae (=Claroideoglomeraceae), was erected in the phylum Glomeromycota. The phylogenomic analyses recovered the Entrophosporales as sister to a clade formed by Diversisporales and Glomeraceae. The strongly conserved entrophosporoid morph of , provided with a newly designated epitype, was shown to represent a group of cryptic species with the potential to produce different glomoid morphs.

View Article and Find Full Text PDF

Three new species of arbuscular mycorrhizal fungi of the genus (phylum Glomeromycota) were described based on their morphology and molecular phylogeny. The phylogeny was inferred from the analyses of the partial 45S rDNA sequences (18S-ITS-28S) and the largest subunit of RNA polymerase II () gene. These species were associated in the field with plants colonizing maritime sand dunes of the Baltic Sea in Poland and formed mycorrhiza in single-species cultures.

View Article and Find Full Text PDF

Examination of fungal specimens collected in the Atlantic rain forest ecosystems of Northeast Brazil revealed many potentially new epigeous and semihypogeous glomerocarp-producing species of the phylum Glomeromycota. Among them were two fungi that formed unorganized epigeous glomerocarps with glomoid spores of almost identical morphology. The sole structure that distinguished the two fungi was the laminate layer 2 of their three-layered spore wall, which in spores of the second fungus crushed in PVLG-based mountants contracted and, consequently, transferred into a crown-like structure.

View Article and Find Full Text PDF

Knowledge about biotic (plant species diversity, biomass) and/or abiotic (physicochemical substrate parameters) factors that determine enzyme activity and functional diversity of the substrate on hard coal spoil heaps is limited. Spontaneously developed vegetation patches dominated by herbaceous species commonly occurring on these spoil heaps: grasses (Poa compressa, Calamagrostis epigejos) and forbs (Daucus carota, Tussilago farfara), were examined. The activity of dehydrogenase and alkaline phosphatase was twice as high in plots dominated by grass species compared with those dominated by forbs.

View Article and Find Full Text PDF

Jasmonates modulate many growth and developmental processes and act as stress hormones that play an important role in plant tolerance to biotic and abiotic stresses. Therefore, there is a need to identify the genes that are regulated through the jasmonate signalling pathway. Aquaporins, and among them the Tonoplast Intrinsic Proteins (TIPs), form the channels in cell membranes that are responsible for the precise regulation of the movement of water and other substrates between cell compartments.

View Article and Find Full Text PDF

This investigation was undertaken to assess the level of environment pollution by biological monitoring. The leaves and bark of popular ornamental trees Acer pseudoplatanus L. and Acer platanoides L.

View Article and Find Full Text PDF