Publications by authors named "Wohlgemuth M"

This paper presents a novel approach for the selective oxidation of alcohols to their corresponding aldehydes through direct mechanocatalysis, employing a gold-coated milling vessel as catalyst and air as the oxidation agent. By adjusting milling frequency, media, and duration, high catalytic efficiencies and selectivities are achieved. Remarkably, yields of up to 99 % are obtained for specific substrates, with a turnover number (TON) of 8200 and a turnover frequency (TOF) of 0.

View Article and Find Full Text PDF

Electrocatalysts are the cornerstone in the transition to sustainable energy technologies and chemical processes. Surface transformations under operation conditions dictate the activity and stability. However, the dependence of the surface structure and transformation on the exposed crystallographic facet remains elusive, impeding rational catalyst design.

View Article and Find Full Text PDF

Here we describe the development of a sustainable and cost-effective approach for catalytic cross-coupling reactions in mechanochemistry. It is found that the substrate's impact with the vessel wall alone is sufficient to initiate the reaction, thus indicating that milling balls function primarily as a mixing agent for direct mechanocatalytic Suzuki coupling. The absence of milling balls can be offset by adjusting the rheology using liquid-assisted grinding (LAG).

View Article and Find Full Text PDF

Background: Acute exposure to seizurogenic organophosphate (OP) nerve agents (OPNA) such as diisopropylfluorophosphate (DFP) or soman (GD), at high concentrations, induce immediate status epilepticus (SE), reactive gliosis, neurodegeneration, and epileptogenesis as a consequence. Medical countermeasures (MCMs-atropine, oximes, benzodiazepines), if administered in < 20 min of OPNA exposure, can control acute symptoms and mortality. However, MCMs alone are inadequate to prevent OPNA-induced brain injury and behavioral dysfunction in survivors.

View Article and Find Full Text PDF

Rapid categorization of vocalizations enables adaptive behavior across species. While categorical perception is thought to arise in the neocortex, humans and other animals could benefit from functional organization of ethologically-relevant sounds at earlier stages in the auditory hierarchy. Here, we developed two-photon calcium imaging in the awake echolocating bat () to study encoding of sound meaning in the Inferior Colliculus, which is as few as two synapses from the inner ear.

View Article and Find Full Text PDF

Acute exposure to seizurogenic organophosphate (OP) nerve agents (OPNA) such as diisopropylfluorophosphate (DFP) or soman (GD), at high concentrations, induce immediate (SE), reactive gliosis, neurodegeneration, and epileptogenesis as a consequence. Medical countermeasures (MCMs- atropine, oximes, benzodiazepines), if administered in < 20 minutes of OPNA exposure, can control acute symptoms and mortality. However, MCMs alone are inadequate to prevent OPNA-induced brain injury and behavioral dysfunction in survivors.

View Article and Find Full Text PDF

Utilizing direct mechanocatalytical conditions, the Sonogashira coupling was successfully performed on the surface of milling tools by using pure Pd and Pd coated steel balls. The optimization of co-catalyst forming additives led to a protocol, which generates quantitative yields under aerobic conditions for various substrates within as little as 90 minutes. Using state-of-the-art spectroscopic, diffractive, as well as in situ methods lead to the identification of a previously unknown and highly reactive complex of the co-catalyst copper.

View Article and Find Full Text PDF

Echolocating bats are among the only mammals capable of powered flight, and they rely on active sensing to find food and steer around obstacles in 3D environments. These natural behaviors depend on neural circuits that support 3D auditory localization, audio-motor integration, navigation, and flight control, which are modulated by spatial attention and action selection.

View Article and Find Full Text PDF

The inert milling balls, commonly utilized in mechanochemical reactions, were coated with a layer of Pd and utilized as catalyst in the direct mechanocatalytic Suzuki reaction. With high yields (>80 %), the milling balls can be recycled multiple times in the absence of any solvents, ligands, catalyst-molecules and -powders, while utilizing as little as 0.8 mg of Pd per coated milling ball.

View Article and Find Full Text PDF

The oxygen evolution reaction (OER) is one of the key kinetically limiting half reactions in electrochemical energy conversion. Model epitaxial catalysts have emerged as a platform to identify structure-function-relationships at the atomic level, a prerequisite to establish advanced catalyst design rules. Previous work identified an inverse relationship between activity and the stability of noble metal and oxide OER catalysts in both acidic and alkaline environments: The most active catalysts for the anodic OER are chemically unstable under reaction conditions leading to fast catalyst dissolution or amorphization, while the most stable catalysts lack sufficient activity.

View Article and Find Full Text PDF

The molecular Suzuki cross-coupling reaction was conducted mechanochemically, without solvents, ligands, or catalyst powders. Utilizing one catalytically active palladium milling ball, products could be formed in quantitative yield in as little as 30 min. In contrast to previous reports, the adjustment of milling parameters led to the complete elimination of abrasion from the catalyst ball, thus enabling the first reported systematic catalyst analysis.

View Article and Find Full Text PDF

The Co-O covalency in perovskite oxide cobaltites such as LaSrCoO is believed to impact the electrocatalytic activity during electrochemical water splitting at the anode where the oxygen evolution reaction (OER) takes place. Additionally, space charge layers through band bending at the interface to the electrolyte may affect the electron transfer into the electrode, complicating the analysis and identification of true OER activity descriptors. Here, we separate the influence of covalency and band bending in hybrid epitaxial bilayer structures of highly OER-active LaSrCoO and undoped and less-active LaCoO.

View Article and Find Full Text PDF

Little is known about fine scale neural dynamics that accompany rapid shifts in spatial attention in freely behaving animals, primarily because reliable indicators of attention are lacking in standard model organisms engaged in natural tasks. The echolocating bat can serve to bridge this gap, as it exhibits robust dynamic behavioral indicators of overt spatial attention as it explores its environment. In particular, the bat actively shifts the aim of its sonar beam to inspect objects in different directions, akin to eye movements and foveation in humans and other visually dominant animals.

View Article and Find Full Text PDF

Resilience is a topic of growing interest in the literature focused on organizations. There is an extensive research on resilience but it is embedded in a variety of disconnected literatures that have developed in different research fields, involving varying levels of analysis and different subconstructs. This has resulted in a general confusion surrounding the concept of resilience and its relationship to similar constructs.

View Article and Find Full Text PDF

A novel time-resolved pump-probe spectroscopic approach that enables to keep high resolution in both the time and energy domain, nanosecond excitation-picosecond ionization-picosecond infrared probe (ns-ps-ps TRIR) spectroscopy, has been applied to the -4-methylformanilide-water (4MetFA-W) cluster. Water migration dynamics from the CO to the NH binding site in a peptide linkage triggered by photoionization of 4MetFA-W is directly monitored by the ps time evolution of IR spectra, and the presence of an intermediate state is revealed. The time evolution is analyzed by rate equations based on a four-state model of the migration dynamics.

View Article and Find Full Text PDF

1,4,5,8,9,11-hexaazatriphenylenehexacarbonitrile (HAT CN) was synthesized mechanochemically at room temperature. The coupling of hexaketocyclohexane and diaminomaleonitrile was conducted in 10 min by vibratory ball milling. The effects of milling parameters, acids, dehydrating agents, and liquid-assisted grinding were rationalized.

View Article and Find Full Text PDF

Animals utilize a variety of active sensing mechanisms to perceive the world around them. Echolocating bats are an excellent model for the study of active auditory localization. The big brown bat (Eptesicus fuscus), for instance, employs active head roll movements during sonar prey tracking.

View Article and Find Full Text PDF

Epigenetic changes have been shown to be associated with both aging process and aging-related diseases. There is evidence regarding the benefits of physical activity on the functionality, cognition, and quality of life of institutionalized older adults, however, the molecular mechanisms involved are not elucidated. The purpose of this pilot study was to investigate the effects of a multimodal exercise intervention on functional outcomes, cognitive performance, quality of life (QOL), epigenetic markers and brain-derived neurotrophic factor (BDNF) levels among institutionalized older adult individuals.

View Article and Find Full Text PDF

Background: Treatment with one standard dose (2 g/kg) of intravenous immunoglobulin is insufficient in a proportion of patients with severe Guillain-Barré syndrome. Worldwide, around 25% of patients severely affected with the syndrome are given a second intravenous immunoglobulin dose (SID), although it has not been proven effective. We aimed to investigate whether a SID is effective in patients with Guillain-Barré syndrome with a predicted poor outcome.

View Article and Find Full Text PDF

Structure-activity relationships built on descriptors of bulk and bulk-terminated surfaces are the basis for the rational design of electrocatalysts. However, electrochemically driven surface transformations complicate the identification of such descriptors. Here we demonstrate how the as-prepared surface composition of (001)-terminated LaNiO epitaxial thin films dictates the surface transformation and the electrocatalytic activity for the oxygen evolution reaction.

View Article and Find Full Text PDF

Absorption of ultraviolet light is known as a major source of carcinogenic mutations of DNA. The underlying processes of excitation energy dissipation are yet not fully understood. In this work we provide a new and generally applicable route for studying the excitation energy transport in multi-chromophoric complexes at an atomistic level.

View Article and Find Full Text PDF

Landmark-guided navigation is a common behavioral strategy for way-finding, yet prior studies have not examined how animals collect sensory information to discriminate landmark features. We investigated this question in animals that rely on active sensing to guide navigation. Four echolocating bats () were trained to use an acoustic landmark to find and navigate through a net opening for a food reward.

View Article and Find Full Text PDF

A large body of laboratory research has investigated the process by which environmental cues are acquired and used for spatial navigation in rodents; however, the key to differentiating between species specializations and general principles lies in comparative research. Rodent research has focused on a class of neurons in the hippocampus implicated in the representation of space - termed place cells - and the process by which these representations form. One class of models of hippocampal place field formation depends on continuous theta, a low frequency brain oscillation that is prevalent in crawling rodents.

View Article and Find Full Text PDF

Objective: An observational cross-sectional study was conducted in a national facioscapulohumeral muscular dystrophy (FSHD) expertise center to estimate the penetrance of FSHD1 and to evaluate phenotype-genotype correlations.

Methods: Ten FSHD1 probands carrying 4-9 D4Z4 unit alleles and 140 relatives were examined. All 150 participants were genetically characterized, including D4Z4 methylation levels in the mutation carriers.

View Article and Find Full Text PDF

Echolocating bats dynamically adapt the features of their sonar calls as they approach obstacles and track targets. As insectivorous bats forage, they increase sonar call rate with decreasing prey distance, and often embedded in bat insect approach sequences are clusters of sonar sounds, termed sonar sound groups (SSGs). The bat's production of SSGs has been observed in both field and laboratory conditions, and is hypothesized to sharpen spatiotemporal sonar resolution.

View Article and Find Full Text PDF