Uracil-DNA glycosylase (UDG) is a key component in the base excision repair pathway for the correction of uracil formed from hydrolytic deamination of cytosine. Thus, it is crucial for genome integrity maintenance. A highly specific, non-labeled, non-radio-isotopic method was developed to measure UDG activity.
View Article and Find Full Text PDFProtocadherin 10 (PCDH10) is identified as a tumor suppressor in multiple cancers. The molecular mechanisms that mediate the functions of PCDH10 have yet to be fully elucidated. Here, we demonstrated that ectopic expression of PCDH10 in colorectal cancer (CRC) cells induced cell cycle retardation and increased apoptosis through regulation of the p53/p21/Rb axis and Bcl-2 expression.
View Article and Find Full Text PDFUracil-DNA glycosylase (UDG) is a highly conserved DNA repair enzyme that acts as a key component in the base excision repair pathway to correct hydrolytic deamination of cytosine making it critical to genome integrity in living organisms. We report here a non-labeled, non-radio-isotopic and very specific method to measure UDG activity. Oligodeoxyribonucleotide duplex containing a site-specific G:U mismatch that is hydrolyzed by UDG then subjected to Matrix Assisted Laser Desorption/Ionization time-of-flight mass spectrometry analysis.
View Article and Find Full Text PDFSmall nucleotide insertion/deletion (indel) errors are one of the common replication errors in DNA synthesis. The most frequent occurrence of indel error was thought to be due to repeated sequences being prone to slippage during DNA replication. Proofreading and DNA mismatch repair are important factors in indel error correction to maintain the high fidelity of genetic information transactions.
View Article and Find Full Text PDFThe maintenance of the genome and its faithful replication is paramount for conserving genetic information. To assess high fidelity replication, we have developed a simple non-labeled and non-radio-isotopic method using a matrix-assisted laser desorption ionization with time-of-flight (MALDI-TOF) mass spectrometry (MS) analysis for a proofreading study. Here, a DNA polymerase [e.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is a problem in obese people caused by increasing intake of high-calorie food such as fructose implicated in the elevated prevalence. It is necessary to identify novel drugs to develop effective therapies. In this study, we combined LOPAC® (The Library of Pharmacologically Active Compounds) and High-Content screening to identify compounds that significantly reduced intracellular lipid droplets (LD) after high fat medium (HFM) treatment.
View Article and Find Full Text PDFDeamination of adenine can occur spontaneously under physiological conditions to generate the highly mutagenic lesion, deoxyinosine (hypoxanthine deoxyribonucleotide, dI). In DNA, dI preferably pairs with cytosine rather than thymine and results in A:T to G:C transition mutations after DNA replication. The deamination of adenine is enhanced by ROS from exposure of DNA to ionizing radiation, UV light, nitrous acid, or heat.
View Article and Find Full Text PDFHyperlipidemia is a risk factor of arteriosclerosis, stroke, and other coronary heart disease, which has been shown to correlate with single nucleotide polymorphisms of genes essential for lipid metabolism, such as lipoprotein lipase (LPL) and apolipoprotein A5 (APOA5). In this study, the effect of magnolol, the main active component extracted from Magnolia officinalis, on LPL activity was investigated. A dose-dependent up-regulation of LPL activity, possibly through increasing LPL mRNA transcription, was observed in mouse 3T3-L1 pre-adipocytes cultured in the presence of magnolol for 6 days.
View Article and Find Full Text PDFProofreading and DNA repair are important factors in maintaining the high fidelity of genetic information during DNA replication. Herein, we designed a non-labeled and non-radio-isotopic simple method to measure proofreading. An oligonucleotide primer is annealed to a template DNA forming a mismatched site and is proofread by Klenow fragment of Escherichia coli DNA polymerase I (pol I) in the presence of all four dideoxyribonucleotide triphosphates.
View Article and Find Full Text PDFBackground: Deamination of adenine can occur spontaneously under physiological conditions generating the highly mutagenic lesion, hypoxanthine. This process is enhanced by ROS from exposure of DNA to ionizing radiation, UV light, nitrous acid, or heat. Hypoxanthine in DNA can pair with cytosine which results in A:T to G:C transition mutations after DNA replication.
View Article and Find Full Text PDFLet-7a-3 transcribes the miRNA let-7a, of which the expression is dysregulated in cancer. We evaluated the significance of let-7a-3 gene methylation in patients with de novo acute myeloid leukemia (AML). Let-7a-3 was methylated in 81.
View Article and Find Full Text PDFDNA repair mechanisms are essential for preservation of genome integrity. However, it is not clear how DNA are selected and processed at broken ends by exonucleases during repair pathways. Here we show that the DnaQ-like exonuclease RNase T is critical for Escherichia coli resistance to various DNA-damaging agents and UV radiation.
View Article and Find Full Text PDFDeamination of adenine can occur spontaneously under physiological conditions, and is enhanced by exposure of DNA to ionizing radiation, UV light, nitrous acid, or heat, generating the highly mutagenic lesion of deoxyinosine in DNA. Such DNA lesions tends to generate A:T to G:C transition mutations if unrepaired. In Escherichia coli, deoxyinosine is primarily removed through a repair pathway initiated by endonuclease V (endo V).
View Article and Find Full Text PDFPurpose: There is no detailed analysis of loss of heterozygosity (LOH) on chromosome 3 in colorectal cancer (CRC). Our aim was to define frequently deleted loci on chromosome 3 and to explore novel prognostic markers and the locations of candidate tumor suppressor genes associated with CRC.
Methods: LOH at 23 microsatellite markers spanning on chromosome 3 was determined in 112 sporadic CRC by automated fluorescence-based polymerase chain reaction.
The stilbenoids, arachidin-1 (Ara-1), arachidin-3, isopentadienylresveratrol, and resveratrol, have been isolated from germinating peanut kernels and characterized as antioxidant and anti-inflammatory agents. Resveratrol possesses anticancer activity, and studies have indicated that it induces programmed cell death (PCD) in human leukemia HL-60 cells. In this study, the anticancer activity of these stilbenoids was determined in HL-60 cells.
View Article and Find Full Text PDFDeoxyinosine (dI) in DNA can arise from hydrolytic or nitrosative deamination of deoxyadenosine. It is excised in a repair pathway that is initiated by endonuclease V, the nfi gene product, in Escherichia coli. Repair was studied in vitro using M13mp18 derived heteroduplexes containing a site-specific deoxyinosine.
View Article and Find Full Text PDFPurpose: Malfunction of mismatch repair (MMR) system and p53 produces nuclear genomic instability and is involved in colorectal tumorigenesis. In addition to a nuclear genome, eukaryotic cells have cytoplasmic genomes that are compartmentalized in the mitochondria. The aims of this study were to detect the mitochondrial genomic instability (mtGI) in colorectal carcinomas, and to explore its relationship with nuclear genetic alterations and its prognostic meaning.
View Article and Find Full Text PDFBackground: Apolipoprotein A5 gene (APOA5) has been shown to modulate plasma triglyceride concentrations. We investigated 2 distinct APOA1/C3/A5 haplotypes roles for hypertriglyceridemia.
Methods: We recruited 308 cases of hypertriglyceridemia and 281 normal controls from a hospital.
Cytotoxic alkyl hydroquinone compounds have been isolated from many plants. We previously isolated 3 structurally similar cytotoxic alkyl hydroquinone compounds from the sap of the lacquer tree Rhus succedanea L. belonging to the sumac family, which have a long history of medicinal use in Asia.
View Article and Find Full Text PDFPalindromic sequences present in DNA may form secondary structures that block DNA replication and transcription causing adverse effects on genome stability. It has been suggested that hairpin structures containing mispaired bases could stimulate the repair systems in human cells. In this study, processing of variable length of palindromic loops in the presence or absence of single-base mismatches was investigated in human cell extracts.
View Article and Find Full Text PDFLanostanoid triterpenes isolated from Ganoderma amboinense were found to inhibit the growth of numerous cancer cell lines, and some of them inhibited the activities of topoisomerases I and IIalpha in vitro. Among the bioactive isolates, one of the most potent triterpene was identified to be 3 alpha-hydroxy-15 alpha-acetoxy-lanosta-7,9(11),24-trien-26-oic acid, ganoderic acid X (GAX). Treatment of human hepatoma HuH-7 cells with GAX caused immediate inhibition of DNA synthesis as well as activation of ERK and JNK mitogen-activated protein kinases, and cell apoptosis.
View Article and Find Full Text PDFIn human cells, large DNA loop heterologies are repaired through a nick-directed pathway independent of mismatch repair. However, a 3'-nick generated by bacteriophage fd gene II protein heterology is not capable of stimulating loop repair. To evaluate the possibility that a mismatch near a loop could induce both repair types in human cell extracts, we constructed and tested a set of DNA heteroduplexes, each of which contains a combination of mismatches and loops.
View Article and Find Full Text PDFThe nick-directed DNA repair efficiency of a set of M13mp18-derived heteroduplexes containing 8-, 12-, 16-, 22-, 27-, 45-, and 429-nucleotide loops was determined by in vitro assay. Unpaired nucleotides of each heteroduplex reside within overlapping recognition sites for two restriction endonucleases, permitting independent evaluation of repair occurring on either DNA strand. Our results show that a strand break located either 3' or 5' to the loop is sufficient to direct heterology repair to the nicked strand in Escherichia coli extracts.
View Article and Find Full Text PDF