Publications by authors named "Wodnicki R"

Wearable ultrasound has been widely developed for long-term, continuous imaging without the need for bulky system manipulation and repeated manual locating. To potentially lead to more accurate and reliable imaging monitoring, this work presents the design, fabrication, and evaluation of a novel high-frequency wearable ultrasound array belt (WUAB) for small animal echocardiography. The fabrication process involved precise dicing technology for a λ-pitch design.

View Article and Find Full Text PDF

Volumetric ultrasound imaging has the potential for operator-independent acquisition and enhanced field of view. Panoramic acquisition has many applications across ultrasound; spanning musculoskeletal, liver, breast, and pediatric imaging; and image-guided therapy. Challenges in high-resolution human imaging, such as subtle motion and the presence of bone or gas, have limited such acquisition.

View Article and Find Full Text PDF

High element density and strict constraints of the element's size have significantly limited the design and fabrication of 2-D ultrasonic arrays, especially fully sampled 2-D arrays. Recently, 3-D printing technology has been one of the most rapidly developing fields. Along with the great progress of 3-D printing technology, complex and detailed 3-D structures have become readily available with a short iteration cycle, which allows us to reduce the complexity of routing and helps to ameliorate assembly problems in 2-D ultrasound array fabrication.

View Article and Find Full Text PDF

Large aperture ultrasonic arrays can be implemented by tiling together multiple pretested modules of high-density acoustic arrays with closely integrated multiplexing and buffering electronics to form a larger aperture with high yield. These modular arrays can be used to implement large 1.75D array apertures capable of focusing in elevation for uniform slice thickness along the axial direction which can improve image contrast.

View Article and Find Full Text PDF
Article Synopsis
  • Microbubble contrast agents are emerging as versatile diagnostic and therapeutic tools, but current ultrasound technologies for their use in therapies require improvement.
  • A new system has been designed that utilizes a 1024-element planar array for real-time, 3D ultrasound guidance, enhancing both treatment and imaging capabilities with significant field-of-view advancements.
  • Experiments showed that the 2D array configuration provides efficient imaging rates and superb contrast resolution, making it effective for monitoring microbubble-enhanced therapies in various clinical settings.
View Article and Find Full Text PDF
Article Synopsis
  • Acoustic Radiation Force Optical Coherence Elastography (ARF-OCE) has been effectively used to assess soft tissue properties like the cornea and retina with high resolution, but existing OCE methods have limitations in spatial and temporal control.
  • A new technique called 2-D ultrasonic array-based OCE imaging combines the benefits of dynamic electronic steering and high-resolution optical coherence tomography (OCT) to improve accuracy in mapping biomechanical properties.
  • Validation and experiments on rabbit corneal tissue show that this innovative approach has the potential to be an important diagnostic tool in ophthalmology.
View Article and Find Full Text PDF

The computation of the electromechanical coupling coefficient (EMCC) of a fully assembled medical ultrasound transducer array is directly computed with closed form expressions. The Levenberg-Marquardt non-linear regression algorithm (LMA) is employed to help confirm the EMCC calculated prediction (k) and provide statistical insights. The complex electrical impedance spectra of a 1-3 composite array with two matching layers operating at a 3.

View Article and Find Full Text PDF

Since the emergence of the COVID-19 pandemic in December of 2019, clinicians and scientists all over the world have faced overwhelming new challenges that not only threaten their own communities and countries but also the world at large. These challenges have been enormous and debilitating, as the infrastructure of many countries, including developing ones, had little or no resources to deal with the crisis. Even in developed countries, such as Italy, health systems have been so inundated by cases that health care facilities became oversaturated and could not accommodate the unexpected influx of patients to be tested.

View Article and Find Full Text PDF

Tiled modular 2-D ultrasound arrays have the potential for realizing large apertures for novel diagnostic applications. This work presents an architecture for fabrication of tileable 2-D array modules implemented using 1-3 composites of high-bandwidth (BW) PIN-PMN-PT single-crystal piezoelectric material closely coupled with high-voltage CMOS application-specific integrated circuit (ASIC) electronics for buffering and multiplexing functions. The module, which is designed to be operated as a λ -pitch 1.

View Article and Find Full Text PDF

This paper describes the development of a miniaturized 15-MHz side-looking phased-array transducer catheter. The array features a 2-2 linear composite with 64 piezoelectric elements mechanically diced into a piece of PMN-30%PT single crystal and separated by non-conductive epoxy kerfs at a 50-μm pitch, yielding a total active aperture of 3.2 mm in the azimuth direction and 1.

View Article and Find Full Text PDF

Ultrasound guided needle biopsy is an important method for collection of breast cancer tissue. In this paper, we report on the design and testing of a high-voltage 1 to 64 Multiplexer/Demultiplexer (MUX/De-MUX) integrated circuit (IC) for ultrasound-guided breast biopsy applications implemented in a high-voltage CMOS process. The IC is intended to be incorporated inside the breast biopsy needle and is designed to fit inside the needle inner diameter of 2.

View Article and Find Full Text PDF

A promising transducer architecture for largearea arrays employs 2-D capacitive micromachined ultrasound transducer (CMUT) devices with backside trench-frame pillar interconnects. Reconfigurable array (RA) application-specified integrated circuits (ASICs) can provide efficient interfacing between these high-element-count transducer arrays and standard ultrasound systems. Standard electronic assembly techniques such as flip-chip and ball grid array (BGA) attachment, along with organic laminate substrate carriers, can be leveraged to create large-area arrays composed of tiled modules of CMUT chips and interface ASICs.

View Article and Find Full Text PDF

Mosaic annular arrays (MAA) based on reconfigurable array (RA) transducer electronics assemblies are presented as a potential solution for future highly integrated ultrasonic transducer subsystems. Advantages of MAAs include excellent beam quality and depth of field resulting from superior elevational focus compared with 1-D electronically scanned arrays, as well as potentially reduced cost, size, and power consumption resulting from the use of a limited number of beamforming channels for processing a large number of subelements. Specific design tradeoffs for these highly integrated arrays are discussed in terms of array specifications for center frequency, element pitch, and electronic switch-on resistance.

View Article and Find Full Text PDF

We present image results obtained using a prototype ultrasound array which demonstrates the fundamental architecture for a large area MEMS based ultrasound device for detection of breast cancer. The prototype array consists of a tiling of capacitive Micro-Machined Ultrasound Transducers (cMUTs) which have been flip-chip attached to a rigid organic substrate. The pitch on the cMUT elements is 185 um and the operating frequency is nominally 9 MHz.

View Article and Find Full Text PDF