Introduction: Training emergency personnel on the clinical management of a mass-casualty incident (MCI) with prior chemical, biological, radioactive, nuclear, or explosives (CBRNE) -exposed patients is a component of hospital preparedness procedures.
Objective: The objective of this research was to determine whether a Virtual Emergency Department (VED), designed after the Stanford University Medical Center's Emergency Department (ED) and populated with 10 virtual patient victims who suffered from a dirty bomb blast (radiological) and 10 who suffered from exposure to a nerve toxin (chemical), is an effective clinical environment for training ED physicians and nurses for such MCIs.
Methods: Ten physicians with an average of four years of post-training experience, and 12 nurses with an average of 9.
Background: Contemporary learning technologies, such as massively multiplayer virtual worlds (MMVW), create new means for teaching and training. However, knowledge about the effectiveness of such training is incomplete, and there are no data regarding how students experience it. Cardiopulmonary resuscitation (CPR) is a field within medicine in high demand for new and effective training modalities.
View Article and Find Full Text PDFBackground: Training interdisciplinary trauma teams to work effectively together using simulation technology has led to a reduction in medical errors in emergency department, operating room, and delivery room contexts. High-fidelity patient simulators (PSs)-the predominant method for training healthcare teams-are expensive to develop and implement and require that trainees be present in the same place at the same time. In contrast, online computer-based simulators are more cost effective and allow simultaneous participation by students in different locations and time zones.
View Article and Find Full Text PDFTrauma from 'Dirty' Bomb blasts presents complex clinical problems to healthcare providers who must make critical emergency care decisions with incomplete information, usually limited initially only to cursory observations and vital signs. A set of simple, HFSM patho-physiological models of hypovolemic shock based upon blood volume deficits and remedial therapeutic actions has been created for 10 Virtual World scenarios used for training healthcare personnel in the diagnosis and management of 'dirty' bomb victims. Several general rules define the models: * Virtual patients have individual characteristics of gender, age, health status.
View Article and Find Full Text PDFObjective: In our effort to establish criterion-based skills training for surgeons, we assessed the performance of 17 experienced laparoscopic surgeons on basic technical surgical skills recorded electronically in 26 modules selected in 5 commercially available, computer-based simulators.
Methods: Performance data were derived from selected surgeons randomly assigned to simulator stations, and practicing repetitively during one and one-half day sessions on 5 different simulators. We measured surgeon proficiency defined as efficient, error-free performance and developed proficiency score formulas for each module.
Stud Health Technol Inform
May 2007
In this study we created a virtual 3D world for learning to manage medical emergencies and evaluated it with 24 high school students in the USA and Sweden. We found that students in both groups felt immersed and found the online simulation easy to use. Scores for flow and self-assessed flow were significantly higher for the RHS group as compared to the HG group (p=.
View Article and Find Full Text PDFIn a mass casualty incident, injured and at-risk patients will pass through a continuum of care from many different providers acting as a team in a clinical environment. As presented at MMVR 14 [Kaufman, et al 2006], formative evaluations have shown that simulation practice is nearly as good as, and in some cases better than, live exercises for stimulating learners to integrate their procedural knowledge in new circumstances through experiential practice. However, to date, multiplayer game technologies have given limited physiological fidelity to their characters, thus limiting the realism and complexity of the scenarios that can be practiced by medical professionals.
View Article and Find Full Text PDFBackground: Several studies have investigated the transfer of surgical trainees' skills acquired on surgical simulators to the operating room setting. The purpose of this study was to compare the effectiveness of two laparoscopic surgery simulators by assessing the transfer of skills learned on simulators to closely matched surgical tasks in the animal laboratory.
Study Design: In this post-test-only Control group study design, 46 surgically naive medical student volunteers were randomly assigned to one of three groups: Tower Trainer group (n = 16), LapSim group (n = 17), and Control group (n = 13).
Stud Health Technol Inform
November 2004