Publications by authors named "Wlodzimierz Zagorski-Ostoja"

Viroids with small, non-coding circular RNA genome can induce diseases in many plant species. The extend of infection symptoms depends on environmental conditions, viroid strain, and host plant species and cultivar. Pathogen recognition leads to massive transcriptional reprogramming to favor defense responses over normal cellular functions.

View Article and Find Full Text PDF

Potato spindle tuber viroid (PSTVd) causes systemic infection in plant hosts. There are many studies on viroid-host plant interactions, but they have predominantly focused on the aboveground part of the plant. Here, we investigated transcriptomic profile changes in tomato roots systemically infected with mild or severe PSTVd variants using a combined microarray/RNA-seq approach.

View Article and Find Full Text PDF

Viroids are small non-capsidated non-coding RNA replicons that utilize host factors for efficient propagation and spread through the entire plant. They can incite specific disease symptoms in susceptible plants. To better understand viroid-plant interactions, we employed microarray analysis to observe the changes of gene expression in "Rutgers" tomato leaves in response to the mild (M) and severe (S23) variants of potato spindle tuber viroid (PSTVd).

View Article and Find Full Text PDF

Maintenance of the rod-like structure of potato spindle tuber viroid (PSTVd), which contains over 20 loops and bulges between double-stranded helices, is important for viroid biology. To study tolerance to modifications of the stem-loop structures and PSTVd capacity for mutation repair, we have created 6 mutants carrying 3-4 nucleotides deletions or insertions at three unique restriction sites, EagI, StyI and AvaII. Differences in the infectivity of these in vitro generated PSTVd mutants can result from where the mutations map, as well as from the extent to which the secondary structure of the molecule is affected.

View Article and Find Full Text PDF

This paper concerns the development of genosensors based on redox-active monolayers incorporating (dipyrromethene)2Cu(II) and (dipyrromethene)2Co(II) complexes formed step by step on a gold electrode surface. They were applied for electrochemical determination of oligonucleotide sequences related to avian influenza virus (AIV) type H5N1. A 20-mer probe (NH2-NC3) was covalently attached to the gold electrode surface via a reaction performed in the presence of ethyl(dimethylaminopropyl)carbodiimide / N-hydroxysuccinimide (EDC/NHS) between the amine group present in the probe and carboxylic groups present on the surface of the redox-active layer.

View Article and Find Full Text PDF

This paper describes the development of a biosensor for the detection of anti-hemagglutinin antibodies against the influenza virus hemagglutinin. The steps of biosensor fabrications are as follows: (i) creation of a mixed layer containing the thiol derivative of dipyrromethene and 4-mercapto-1-butanol, (ii) complexation of Cu(II) ions, (iii) oriented immobilization of the recombinant histidine-tagged hemagglutinin, and (iv) filling free spaces with bovine serum albumin. The interactions between recombinants hemagglutinin from the highly pathogenic avian influenza virus type H5N1 and anti-hemagglutinin H5 monoclonal antibodies were explored with Osteryoung square-wave voltammetry.

View Article and Find Full Text PDF

This paper concerns the development of a redox-active monolayer and its application for the construction of an electrochemical genosensor designed for the detection of specific DNA and RNA oligonucleotide sequences related to the avian influenza virus (AIV) type H5N1. This new redox layer was created on a gold electrode surface step by step. Cyclic Voltammetry, Osteryoung Square-Wave Voltammetry and Differential Pulse Voltammetry were used for its characterization.

View Article and Find Full Text PDF

Gram-positive and nonpathogenic lactic acid bacteria (LAB) are considered to be promising candidates for the development of new, safe systems of heterologous protein expression. Recombinant LAB has been shown to induce specific local and systemic immune response against selected pathogens, and could be a good alternative to classical attenuated carriers. The main goal of our study was to express the avian influenza haemagglutinin (H5) and chicken interleukin 2 (chIL-2) in Lactococcus lactis.

View Article and Find Full Text PDF

Purification of suitable quantity of homogenous protein is very often the bottleneck in protein structural studies. Overexpression of a desired gene and attachment of enzymatically cleavable affinity tags to the protein of interest made a breakthrough in this field. Here we describe the structure of Galleria mellonella silk proteinase inhibitor 2 (GmSPI-2) determined both by X-ray diffraction and NMR spectroscopy methods.

View Article and Find Full Text PDF

Analyses and visualizations by the ISSCOR method of influenza virus hemagglutinin genes of different A-subtypes revealed some rather striking temporal relationships between groups of individual gene subsets. Based on these findings we consider application of the ISSCOR-PCA method for analyses of large sets of homologous genes to be a worthwhile addition to a toolbox of genomics--allowing for a rapid diagnostics of trends, and ultimately even aiding an early warning of newly emerging epidemiological threats.

View Article and Find Full Text PDF

The A/swan/Poland/305-135V08/2006 (H5N1-subtype) hemagglutinin (HA) gene was cloned and expressed in yeast Pichia pastoris (P. pastoris). The HA cDNA lacking the C-terminal transmembrane anchor-coding sequence was fused to an α-factor leader peptide and placed under control of the methanol-inducible P.

View Article and Find Full Text PDF

Broiler type chickens were immunized intramuscularly with a DNA vaccine encoding hemagglutinin (HA) from H5N1 avian influenza virus. The chickens were divided into four groups: control group which was not immunized, a group which obtained only one dose, and two groups which were immunized twice, one group with a boost two weeks after the priming and the other four weeks. Blood samples were collected at several time points and the dynamics of the humoral response to the vaccine was studied.

View Article and Find Full Text PDF

This paper concerns the development of an immunosensor for detection of peptides derived from avian influenza hemagglutinin H5. Its preparation consists of successive gold electrode modification steps: (i) modification with 1,6-hexanedithiol and gold colloidal nanoparticles; (ii) immobilization of antibody-binding fragments (Fab') of anti-hemagglutinin H5 monoclonal antibodies Mab 6-9-1 via S-Au covalent bonds; and (iii) covering the remaining free space on the electrode surfaces with bovine serum albumin. The interactions between Fab' fragments and hemagglutinin (HA) variants have been explored with electrochemical impedance spectroscopy (EIS) in the presence of [Fe(CN)6](3-/4-) as an electroactive marker.

View Article and Find Full Text PDF

We report the use of Co-porphyrins as electrochemical tags for a highly sensitive and selective genosensor. An avian influenza virus-based DNA sequence characteristic of H5N1 was detected at femtomolar levels from competing non-complementary sequences through hybridisation with the labeled DNA.

View Article and Find Full Text PDF

This paper describes the development of an immunosensor for detection of anti-hemagglutinin antibodies. Its preparation consists of successive modification steps of glassy carbon electrodes: (i) creation of COOH groups, (ii) covalent immobilization of protein A with EDC/NHS coupling reaction, (iii) covering with anti-His IgG monoclonal antibody, (iv) immobilization of the recombinant His-tagged hemagglutinin (His6-H5 HA), (v) filling free space with BSA. The interactions between two variants of recombinant HA (short and long) from highly pathogenic avian influenza virus H5N1 and the anti-H5 HA monoclonal antibody (Mab 6-9-1) have been explored with electrochemical impedance spectroscopy (EIS).

View Article and Find Full Text PDF

The duo-genosensor consisting of two different oligonucleotide probes immobilized covalently on the surface of one gold electrode via Au-S bond formation was used for simultaneous determination of two different oligonucleotide targets. One of the probes, decorated on its 5'-end with ferrocene (SH-ssDNA-Fc), is complementary to the cDNA representing a sequence encoding part of H5 hemagglutinin from H5N1 virus. The second probe, decorated on its 5'-end with methylene blue (SH-ssDNA-MB), is complementary to cDNA representing the fragment of N1 neuraminidase from the same virus.

View Article and Find Full Text PDF

Phylogenetic analyses based on small to moderately sized sets of sequential data lead to overestimating mutation rates in influenza hemagglutinin (HA) by at least an order of magnitude. Two major underlying reasons are: the incomplete lineage sorting, and a possible absence in the analyzed sequences set some of key missing ancestors. Additionally, during neighbor joining tree reconstruction each mutation is considered equally important, regardless of its nature.

View Article and Find Full Text PDF

Translation of viral proteins from subgenomic RNAs (sgRNAs) is a common strategy among positive-stranded RNA viruses. Unlike host mRNA, sgRNA of Potato leafroll virus (PLRV) does not possess a cap at its 5' end nor a poly(A) tail at the 3' terminus, both of which are known to be crucial for translation of RNA in eukaryotic cells. Here, we demonstrate, that in wheat germ extract (WGE) truncation of the sgRNA1 5' UTR increases translation efficiency, as it has previously been observed in rabbit reticulocyte lysate (RRL), whereas removal of the 3' UTR does not affect translation.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) chronic infections represent one of the major and still unresolved health problems because of low efficiency and high cost of current therapy. Therefore, our studies centered on a viral protein, the NS3 helicase, whose activity is indispensable for replication of the viral RNA, and on its peptide inhibitor that corresponds to a highly conserved arginine-rich sequence of domain 2 of the helicase. The NS3 peptide (p14) was expressed in bacteria.

View Article and Find Full Text PDF

Exogenous proteinase inhibitors are valuable and economically interesting protective biotechnological tools. We examined whether small proteinase inhibitors when fused to a selected target protein can protect the target from proteolytic degradation without simultaneously affecting the function and activity of the target domain. Two proteinase inhibitors were studied: a Kazal-type silk proteinase inhibitor (SPI2) from Galleria mellonella, and the Cucurbita maxima trypsin inhibitor I (CMTI I).

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is considered one of the most dangerous pathogens since about 3% of the world population is HCV-infected and the virus is a major cause of hepatitis, cirrhosis, and liver carcinoma. A need for a more efficient therapy prompted us to investigate new class of compounds, such as tropolone derivatives that possess antiviral, antibacterial, and antifungal activities. To synthesize bromo- and morpholinomethyl-analogues of tropolone, the previously reported methods were modified.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvk925918bpoctmlfn79v0sifalouaer2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once