Publications by authors named "Wlodzimierz Klonowski"

Malformations of cortical development are a group of rare disorders commonly manifesting with developmental delay, cerebral palsy or seizures. The neurological outcome is extremely variable depending on the type, extent and severity of the malformation and the involved genetic pathways of brain development. Neuroimaging plays an essential role in the diagnosis of these malformations, but several issues regarding malformations of cortical development definitions and classification remain unclear.

View Article and Find Full Text PDF

In the middle of March 2019, a group of scientists and clinicians (as well as those who wear both hats) gathered in the green campus of the Weizmann Institute of Science to share recent scientific findings, to establish collaborations, and to discuss future directions for better diagnosis, etiology modeling and treatment of brain malformations. One hundred fifty scientists from twenty-two countries took part in this meeting. Thirty-eight talks were presented and as many as twenty-five posters were displayed.

View Article and Find Full Text PDF

Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases.

View Article and Find Full Text PDF
Article Synopsis
  • - Electrical stimulation of the auricular vagus nerve (aVNS) is a new technology in bioelectronic medicine that modulates the vagus nerve's influence on various physiological processes, acting as a communication pathway between the brain and the body.
  • - The effectiveness of aVNS is influenced by engineering considerations, and addressing safety and regulatory concerns is crucial for its application in therapy.
  • - Recent international workshops focused on the physiological mechanisms, research studies, and technological developments related to aVNS, highlighting the need for innovative approaches in personalized electroceuticals to enhance therapeutic outcomes.
View Article and Find Full Text PDF

Objective: We have upgraded our own original color filtration pixel-by-pixel (CFPP) method (Klonowski et al 2018a Physiol. Meas. 39 034002) to enable not only automatic and rapid assessment of the proliferation index of a tumor or neoplasm but also quick automatic location of hot-spots (regions of interest, ROIs) in immunohistochemically stained microscopic images of neoplasms and tumors.

View Article and Find Full Text PDF

Analysis of heart rate variability (HRV) can be applied to assess the autonomic nervous system (ANS) sympathetic and parasympathetic activity. Since living systems are non-linear, evaluation of ANS activity is difficult by means of linear methods. We propose to apply the Higuchi fractal dimension (HFD) method for assessment of ANS activity.

View Article and Find Full Text PDF

Objective: We developed a new method that enables automatic and rapid assessment of a tumor's proliferation index from immunohistochemically (IHC) stained microscopic images.

Approach: The method is based on computer-aided analysis of images - color filtration pixel-by-pixel (CFPP method) of the whole histopathological virtual slides.

Main Results: The method is simple, rapid, and does not require the time consuming step of selecting manually areas of interest nor the need for computationally complicated detection of hot-spots, both of which attempt to emulate a pathologist's way of estimating a proliferation index.

View Article and Find Full Text PDF

Unlabelled: Bowel obstruction is a condition which has been known for many years. As time goes by, the problem is still often encountered at surgical emergency rooms. More than 20% of emergency surgical interventions are performed because of symptoms of digestive tract obstruction with the disease mostly situated in the small bowel.

View Article and Find Full Text PDF

It has been ascertained that the human brain is a complex system studied at multiple scales, from neurons and microcircuits to macronetworks. The brain is characterized by a hierarchical organization that gives rise to its highly topological and functional complexity. Over the last decades, fractal geometry has been shown as a universal tool for the analysis and quantification of the geometric complexity of natural objects, including the brain.

View Article and Find Full Text PDF

We propose several models applicable to both selection and election processes when each selecting or electing subject has access to different information about the objects to choose from. We wrote special software to simulate these processes. We consider both the cases when the environment is neutral (natural process) as well as when the environment is involved (controlled process).

View Article and Find Full Text PDF

This study addresses application of Higuchi's fractal dimension (FD) as a measure to evaluate the effect of external periodic stressor on electrical oscillations in the brain. Modulated microwave radiation was applied as a weak periodic stressor with strongly inhomogeneous distribution inside the brain. Experiments were performed on a group of 14 volunteers.

View Article and Find Full Text PDF

We propose new method of assessment of histological images for medical diagnostics. 2-D image is preprocessed to form 1-D landscapes or 1-D signature of the image contour and then their complexity is analyzed using Higuchi's fractal dimension method. The method may have broad medical application, from choosing implant materials to differentiation between benign masses and malignant breast tumors.

View Article and Find Full Text PDF

This paper is based on a discussion that was held during a special session on models of mental disorders, at the NeuroMath meeting in Stockholm, Sweden, in September 2008. At this occasion, scientists from different countries and different fields of research presented their research and discussed open questions with regard to analyses and models of mental disorders, in particular depression. The content of this paper emerged from these discussions and in the presentation we briefly link biomarkers (hormones), bio-signals (EEG) and biomaps (brain-maps via EEG) to depression and its treatments, via linear statistical models as well as nonlinear dynamic models.

View Article and Find Full Text PDF

We discuss the BCI based on inner tones and inner music. We had some success in the detection of inner tones, the imagined tones which are not sung aloud. Rather easily imagined and controlled, they offer a set of states usable for BCI, with high information capacity and high transfer rates.

View Article and Find Full Text PDF

We answer several important questions concerning EEG. We also shortly discuss importance of nonlinear methods of contemporary physics in EEG analysis. Basic definitions and explanation of fundamental concepts may be found in my previous publications in NBP.

View Article and Find Full Text PDF

Methods of contemporary physics are increasingly important for biomedical research but, for a multitude of diverse reasons, most practitioners of biomedicine lack access to a comprehensive knowledge of these modern methodologies. This paper is an attempt to describe nonlinear dynamics and its methods in a way that could be read and understood by biomedical professionals who usually are not trained in advanced mathematics. After an overview of basic concepts and vocabulary of nonlinear dynamics, deterministic chaos, and fractals, application of nonlinear methods of biosignal analysis is discussed.

View Article and Find Full Text PDF

The two goals of Nonlinear Biomedical Physics are: firstly to show how nonlinear methods can shed new light on biological phenomena and medical applications and secondly to bridge the technical, mathematical, and cultural divides between the physical disciplines where these methods are being developed and the audience for their use in the biological and medical sciences.

View Article and Find Full Text PDF