Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the ATXN3 gene encoding the ataxin-3 protein. Despite extensive research the exact pathogenic mechanisms of SCA3 are still not understood in depth. In the present study, to gain insight into the toxicity induced by the expanded CAG repeats in SCA3, we comprehensively investigated repeat-associated non-ATG (RAN) translation in various cellular models expressing translated or non-canonically translated ATXN3 sequences with an increasing number of CAG repeats.
View Article and Find Full Text PDFPolyglutamine (polyQ) diseases are incurable neurological disorders caused by CAG repeat expansion in the open reading frames (ORFs) of specific genes. This type of mutation in the HTT gene is responsible for Huntington's disease (HD). CAG repeat-targeting artificial miRNAs (art-miRNAs) were shown as attractive therapeutic approach for polyQ disorders as they caused allele-selective decrease in the level of mutant proteins.
View Article and Find Full Text PDFSpinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), is autosomal-dominant neurodegenerative disease caused by an expansion of polyglutamine-encoding CAG repeats in the ATXN3 gene. Here we established IBCHi002-A induced pluripotent stem cells (iPSCs) line generated from SCA3 patient fibroblasts by using non-integrative Sendai-virus delivery system of four reprogramming factors. This cellular model provides a valid platform for study SCA3 pathogenesis and potential therapies for this so far incurable disease.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are short, non-coding post-transcriptional gene regulators. In mammalian cells, mature miRNAs are produced from primary precursors (pri-miRNAs) using canonical protein machinery, which includes Drosha/DGCR8 and Dicer, or the non-canonical mirtron pathway. In plant cells, mature miRNAs are excised from pri-miRNAs by the DICER-LIKE1 (DCL1) protein complex.
View Article and Find Full Text PDFMicroRNA (miRNA)-mediated crosstalk between coding and non-coding RNAs of various types is known as the competing endogenous RNA (ceRNA) concept. Here, we propose that there is a specific variant of the ceRNA language that takes advantage of simple sequence repeat (SSR) wording. We applied bioinformatics tools to identify human transcripts that may be regarded as repeat-associated ceRNAs (raceRNAs).
View Article and Find Full Text PDFGenome editing technology based on engineered nucleases has been increasingly applied for targeted modification of genes in a variety of cell types and organisms. However, the methods currently used for evaluating the editing efficiency still suffer from many limitations, including preferential detection of some mutation types, sensitivity to polymorphisms that hamper mismatch detection, lack of multiplex capability, or sensitivity to assay conditions. Here, we describe qEva-CRISPR, a new quantitative method that overcomes these limitations and allows simultaneous (multiplex) analysis of CRISPR/Cas9-induced modifications in a target and the corresponding off-targets or in several different targets.
View Article and Find Full Text PDFHuntington's disease (HD) is a progressive autosomal dominant neurodegenerative disorder caused by the expansion of CAG repeats in the first exon of the huntingtin gene (). The accumulation of polyglutamine-rich huntingtin proteins affects various cellular functions and causes selective degeneration of neurons in the striatum. Therapeutic strategies used to date to silence the expression of mutant include antisense oligonucleotides, RNA interference-based approaches and, recently, genome editing with the CRISPR/Cas9 system.
View Article and Find Full Text PDFThe nucleoplasm is not homogenous; it consists of many types of nuclear bodies, also known as nuclear domains or nuclear subcompartments. These self-organizing structures gather machinery involved in various nuclear activities. Nuclear speckles (NSs) or splicing speckles, also called interchromatin granule clusters, were discovered as sites for splicing factor storage and modification.
View Article and Find Full Text PDFMutat Res Rev Mutat Res
July 2017
DNA mutations of various types often affect the cellular localization and function of gene products. The role of mutant transcripts in the pathogenesis of human disease is increasingly recognized. Among the pathogenic RNA variants are transcripts with single nucleotide substitutions, small insertions or deletions, aberrantly or alternatively spliced transcripts and RNAs derived from fused genes.
View Article and Find Full Text PDFShort Tandem Repeats (STRs) are frequent entities in many transcripts, however, in some cases, pathological events occur when a critical repeat length is reached. This phenomenon is observed in various neurological disorders, such as myotonic dystrophy type 1 (DM1), fragile X-associated tremor/ataxia syndrome, C9orf72-related amyotrophic lateral sclerosis and frontotemporal dementia (C9ALS/FTD), and polyglutamine diseases, such as Huntington's disease (HD) and spinocerebellar ataxias (SCA). The pathological effects of these repeats are triggered by mutant RNA transcripts and/or encoded mutant proteins, which depend on the localization of the expanded repeats in non-coding or coding regions.
View Article and Find Full Text PDFThe first methods for visualizing RNAs within cells were designed for simple imaging of specific transcripts in cells or tissues and since then significant technical advances have been made in this field. Today, high-resolution images can be obtained, enabling visualization of single transcript molecules, quantitative analyses of images, and precise localization of RNAs within cells as well as co-localization of transcripts with specific proteins or other molecules. In addition, tracking of RNA dynamics within single cell has become possible.
View Article and Find Full Text PDFIn several human polyglutamine diseases caused by expansions of CAG repeats in the coding sequence of single genes, mutant transcripts are detained in nuclear RNA foci. In polyglutamine disorders, unlike other repeat-associated diseases, both RNA and proteins exert pathogenic effects; therefore, decreases of both RNA and protein toxicity need to be addressed in proposed treatments. A variety of oligonucleotide-based therapeutic approaches have been developed for polyglutamine diseases, but concomitant assays for RNA foci reduction are lacking.
View Article and Find Full Text PDFSpinocerebellar ataxia type 7 (SCA7) is a human neurodegenerative polyglutamine (polyQ) disease caused by a CAG repeat expansion in the open reading frame of the gene. The allele-selective silencing of mutant transcripts using a repeat-targeting strategy has previously been used for several polyQ diseases. Herein, we demonstrate that the selective targeting of a repeat tract in a mutant transcript by RNA interference is a feasible approach and results in an efficient decrease of mutant ataxin-7 protein in patient-derived cells.
View Article and Find Full Text PDFRNA-protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA-protein networks.
View Article and Find Full Text PDFPolyglutamine (polyQ) diseases comprise a group of nine genetic disorders that are caused by the expansion of the CAG triplet repeat, which encodes glutamine, in unrelated single genes. Various oligonucleotide (ON)-based therapeutic approaches have been considered for polyQ diseases. The very attractive CAG repeat-targeting strategy offers selective silencing of the mutant allele by directly targeting the mutation site.
View Article and Find Full Text PDFA number of human genetic disorders, including Huntington's disease, myotonic dystrophy type 1, C9ORF72 form of amyotrophic lateral sclerosis and several spinocerebellar ataxias, are caused by the expansion of various microsatellite sequences in single implicated genes. The neurodegenerative and neuromuscular nature of the repeat expansion disorders considerably limits the access of researchers to appropriate cellular models of these diseases. This limitation, however, can be overcome by the application of induced pluripotent stem cell (iPSC) technology.
View Article and Find Full Text PDFThe human genetic disorders caused by CAG repeat expansions in the translated sequences of various genes are called polyglutamine (polyQ) diseases because of the cellular "toxicity" of the mutant proteins. The contribution of mutant transcripts to the pathogenesis of these diseases is supported by several observations obtained from cellular models of these disorders. Here, we show that the common feature of cell lines modeling polyQ diseases is the formation of nuclear CAG RNA foci.
View Article and Find Full Text PDFshmiRs are pri-miRNA-based RNA interference triggers from which exogenous siRNAs are expressed in cells to silence target genes. These reagents are very promising tools in RNAi in vivo applications due to their good activity profile and lower toxicity than observed for other vector-based reagents such as shRNAs. In this study, using high-resolution northern blotting and small RNA sequencing, we investigated the precision with which RNases Drosha and Dicer process shmiRs.
View Article and Find Full Text PDFRNA fluorescence in situ hybridization (FISH) is a widely used technique for detecting transcripts in fixed cells and tissues. Many variants of RNA FISH have been proposed to increase signal strength, resolution and target specificity. The current variants of this technique facilitate the detection of the subcellular localization of transcripts at a single molecule level.
View Article and Find Full Text PDFRNA interference triggers such as short interfering RNA (siRNA) or genetically encoded short hairpin RNA (shRNA) and artificial miRNA (sh-miR) are widely used to silence the expression of specific genes. In addition to silencing selected targets, RNAi reagents may induce various side effects, including immune responses. To determine the molecular markers of immune response activation when using RNAi reagents, we analyzed the results of experiments gathered in the RNAimmuno (v 2.
View Article and Find Full Text PDFThe ribonuclease Dicer excises mature miRNAs from a diverse group of precursors (pre-miRNAs), most of which contain various secondary structure motifs in their hairpin stem. In this study, we analyzed Dicer cleavage in hairpin substrates deprived of such motifs. We searched for the factors other than the secondary structure, which may influence the length diversity and heterogeneity of miRNAs.
View Article and Find Full Text PDFThe fundamental role of microRNAs (miRNAs) in the regulation of gene expression has been well-established, but many miRNA-driven regulatory mechanisms remain elusive. In the present study, we demonstrate that miRNAs regulate the expression of DMPK, the gene mutated in myotonic dystrophy type 1 (DM1), and we provide insight regarding the concerted effect of the miRNAs on the DMPK target. Specifically, we examined the binding of several miRNAs to the DMPK 3' UTR using luciferase assays.
View Article and Find Full Text PDFPolyglutamine diseases, including Huntington's disease and a number of spinocerebellar ataxias, are caused by expanded CAG repeats that are located in translated sequences of individual, functionally-unrelated genes. Only mutant proteins containing polyglutamine expansions have long been thought to be pathogenic, but recent evidence has implicated mutant transcripts containing long CAG repeats in pathogenic processes. The presence of two pathogenic factors prompted us to attempt to distinguish the effects triggered by mutant protein from those caused by mutant RNA in cellular models of polyglutamine diseases.
View Article and Find Full Text PDFHuntington disease (HD) is a brain disorder characterized by the late onset of motor and cognitive symptoms, even though the neurons in the brain begin to suffer dysfunction and degeneration long before symptoms appear. There is currently no cure. Several molecular and developmental effects of HD have been identified using neural stem cells (NSCs) and differentiated cells, such as neurons and astrocytes.
View Article and Find Full Text PDFSmall noncoding RNAs perform multiple regulatory functions in cells, and their exogenous mimics are widely used in research and experimental therapies to interfere with target gene expression. MicroRNAs (miRNAs) are the most thoroughly investigated representatives of the small RNA family, which includes short interfering RNAs (siRNAs), PIWI-associated RNA (piRNAs), and others. Numerous methods have been adopted for the detection and characterization of small RNAs, which is challenging due to their short length and low level of expression.
View Article and Find Full Text PDF