Publications by authors named "Wlodzimierz Bujalowski"

Double-stranded DNA viruses package their genomes into pre-assembled protein procapsids. This process is driven by macromolecular motors that transiently assemble at a unique vertex of the procapsid and utilize homomeric ring ATPases to couple genome encapsidation to ATP hydrolysis. Here, we describe the biochemical and biophysical characterization of the packaging ATPase from phage asccφ28.

View Article and Find Full Text PDF

Zika virus has recently emerged as an important human pathogen that has spread to more than 60 countries. Infection of a pregnant woman with Zika virus can cause severe brain malformations in the child such as microcephaly and other birth defects. Despite the medical importance of Zika virus infection, the mechanism of viral replication, a process commonly targeted by antiviral therapeutics, is not well understood.

View Article and Find Full Text PDF

The process of RNA replication by dengue virus is still not completely understood despite the significant progress made in the last few years. Stem-loop A (SLA), a part of the viral 5' untranslated region (UTR), is critical for the initiation of dengue virus replication, but quantitative analysis of the interactions between the dengue virus polymerase NS5 and SLA in solution has not been performed. Here, we examine how solution conditions affect the size and shape of SLA and the formation of the NS5-SLA complex.

View Article and Find Full Text PDF

Physico-chemical titration techniques are the most commonly used methods in characterizing molecular interactions. These methods are mainly based on spectroscopic, calorimetric, hydrodynamic, etc., measurements.

View Article and Find Full Text PDF

Obtaining a detailed knowledge about energetics of ligand-macromolecule interactions is a prerequisite for elucidation of the nature, behavior, and activities of the formed complexes. The most commonly used methods in characterizing molecular interactions are physico-chemical techniques based mainly on spectroscopic, calorimetric, hydrodynamic, etc., measurements.

View Article and Find Full Text PDF

Elucidation of ligand - macromolecule interactions requires detailed knowledge of energetics of the formed complexes. Spectroscopic methods are most commonly used in characterizing molecular interactions in solution. The methods do not require large quantities of material and most importantly, do not perturb the studied reactions.

View Article and Find Full Text PDF

Thermodynamic and structural characteristics of the Escherichia coli DnaT protein trimerization reaction have been quantitatively examined using fluorescence anisotropy and analytical ultracentrifugation methods. Binding of magnesium to the DnaT monomers regulates the intrinsic affinity of the DnaT trimerization reaction. Comparison between the DnaT trimer and the isolated N-terminal core domain suggests that magnesium binds to the N-terminal domain but does not associate with the C-terminal region of the protein.

View Article and Find Full Text PDF

The oligomerization reaction of the Escherichia coli DnaT protein has been quantitatively examined using fluorescence anisotropy and analytical ultracentrifugation methods. In solution, DnaT exists as a monomer-trimer equilibrium system. At the estimated concentration in the E.

View Article and Find Full Text PDF

Functional interactions of the Escherichia coli PriA helicase 181N-terminal domain with the DNA and nucleotide cofactors have been quantitatively examined. The isolated 181N-terminal domain forms a stable dimer in solution, most probably reflecting the involvement of the domain in specific cooperative interactions of the intact PriA protein--double-stranded DNA (dsDNA) complex. Only one monomer of the domain dimer binds the DNA; i.

View Article and Find Full Text PDF

Fundamental aspects of interactions of the Dengue virus type 3 full-length polymerase with the single-stranded and double-stranded RNA and DNA have been quantitatively addressed. The polymerase exists as a monomer with an elongated shape in solution. In the absence of magnesium, the total site size of the polymerase-ssRNA complex is 26 ± 2 nucleotides.

View Article and Find Full Text PDF

A direct quantitative analysis of the initial steps in primosome assembly, involving PriA and PriB proteins and the minimal primosome assembly site (PAS) of phage ϕX174, has been performed using fluorescence intensity, fluorescence anisotropy titration, and fluorescence resonance energy transfer techniques. We show that two PriA molecules bind to the PAS at both strong and weak binding sites on the DNA, respectively, without detectable cooperative interactions. Binding of the PriB dimer to the PriA-PAS complex dramatically increases PriA's affinity for the strong site, but only slightly affects its affinity for the weak site.

View Article and Find Full Text PDF

Kinetic mechanism of the ssDNA recognition by the polymerase X of African Swine Fever Virus (ASFV) and energetics of intermediate formations have been examined, using the fluorescence stopped-flow method. The association is a minimum three-step process PolX + ssDNA k(1) <-- --> k(-1) (P-ssDNA)(1) k(2) <-- --> k(-2) (P-ssDNA)(2) k(3) <-- --> k(-3) (P-ssDNA)(3). The nucleic acid makes the initial contact through the C-terminal domain, which generates most of the overall ΔG°.

View Article and Find Full Text PDF

Interactions of the polymerase X from the African Swine Fever Virus with the ssDNA have been studied, using quantitative fluorescence titration and fluorescence resonance energy transfer techniques. The primary DNA-binding subsite of the enzyme, independent of the DNA conformation, is located on the C-terminal domain. Association of the bound DNA with the catalytic N-terminal domain finalizes the engagement of the total DNA-binding site of the enzyme and induces a large topological change in the structure of the bound ssDNA.

View Article and Find Full Text PDF

Interactions of the 8-kDa domain of the rat pol β and the intact enzyme with the ssDNA have been studied, using the quantitative fluorescence titration technique. The 8-kDa domain induces large topological changes in the bound DNA structure and engages much larger fragments of the DNA than when embedded in the intact enzyme. The DNA affinity of the domain is predominantly driven by entropy changes, dominated by the water release from the protein.

View Article and Find Full Text PDF

Analysis of thermodynamically rigorous binding isotherms provides fundamental information about the energetics of the ligand-macromolecule interactions and often an invaluable insight about the structure of the formed complexes. The Macromolecular Competition Titration (MCT) method enables one to quantitatively obtain interaction parameters of protein-nucleic acid interactions, which may not be available by other methods, particularly for the unmodified long polymer lattices and specific nucleic acid substrates, if the binding is not accompanied by adequate spectroscopic signal changes. The method can be applied using different fluorescent nucleic acids or fluorophores, although the etheno-derivatives of nucleic acid are especially suitable as they are relatively easy to prepare, have significant blue fluorescence, their excitation band lies far from the protein absorption spectrum, and the modification eliminates the possibility of base pairing with other nucleic acids.

View Article and Find Full Text PDF

The Escherichia coli PriA helicase complex with the double-stranded DNA (dsDNA), the location of the strong DNA-binding subsite, and the effect of the nucleotide cofactors, bound to the strong and weak nucleotide-binding site of the enzyme on the dsDNA affinity, have been analyzed using the fluorescence titration, analytical ultracentrifugation, and photo-cross-linking techniques. The total site size of the PriA-dsDNA complex is only 5±1 bp, that is, dramatically lower than 20±3 nucleotides occluded in the enzyme-single-stranded DNA (ssDNA) complex. The helicase associates with the dsDNA using its strong ssDNA-binding subsite in an orientation very different from the complex with the ssDNA.

View Article and Find Full Text PDF

The RNA-binding protein Hfq has been studied extensively for its function as a modulator of gene expression at the post-transcriptional level. While most Hfq studies have focused on the protein's interaction with sRNAs and mRNAs, Hfq binding to DNA has been observed but is less explored. During the isolation of Hfq from Escherichiacoli, we found genomic DNA fragments associated with the protein after multiple steps of purification.

View Article and Find Full Text PDF

The Escherichia coli single-stranded DNA binding protein (SSB) plays a central role in DNA metabolism through its high affinity interactions with ssDNA, as well as its interactions with numerous other proteins via its unstructured C-termini. Although SSB interacts with at least 14 other proteins, it is not understood how SSB might recruit one protein over another for a particular metabolic role. To probe the specificity of these interactions, we have used isothermal titration calorimetry to examine the thermodynamics of binding of SSB to two E.

View Article and Find Full Text PDF

Quantitative analysis of the interactions of the Escherichia coli primosomal PriB protein with a single-stranded DNA was done using quantitative fluorescence titration, photocrosslinking, and analytical ultracentrifugation techniques. Stoichiometry studies were done with a series of etheno-derivatives of single-stranded (ss) DNA oligomers. Interactions with the unmodified nucleic acids were studied, using the macromolecular competition titration (MCT) method.

View Article and Find Full Text PDF

Energetics and specificity of interactions between the Escherichia coli PriA helicase and the gapped DNAs have been studied, using the quantitative fluorescence titration and analytical ultracentrifugation methods. The gap complex has a surprisingly low minimum total site size, corresponding to approximately 7 nucleotides of the single-stranded DNA (ssDNA), as compared with the site size of approximately 20 nucleotides of the enzyme-ssDNA complex. The dramatic difference in stoichiometries indicates that the enzyme predominantly engages the strong DNA-binding subsite in interactions with the gap and assumes a very different orientation in the gap complex, as compared with the complex with the ssDNA.

View Article and Find Full Text PDF

The dynamics of the nucleotide binding to a single, noninteracting nucleotide-binding site of the hexameric helicase RepA protein of plasmid RSF1010 has been examined, using the fluorescence stopped-flow method. The experiments have been performed with fluorescent analogues of ATP and ADP, TNP-ATP and TNP-ADP, respectively. In the presence of Mg(2+), the association of the cofactors proceeds as a sequential three-step process [Formula: see text] The sequential nature of the mechanism indicates the lack of significant conformational equilibria of the helicase prior to nucleotide binding.

View Article and Find Full Text PDF

Interactions of nucleotide cofactors with both protein components of the Escherichia coli DnaB helicase complex with the replication factor, the DnaC protein, have been examined using MANT-nucleotide analogues. At saturation, in all examined stationary complexes, including the binary, DnaB-DnaC, and tertiary, DnaB-DnaC-ssDNA, complexes, the helicase binds six cofactor molecules. Thus, protein-protein and protein-DNA interactions do not affect the maximum stoichiometry of the helicase-nucleotide interactions.

View Article and Find Full Text PDF

The kinetic mechanism of NTP binding and hydrolysis by the Escherichia coli replicative helicase, the DnaB protein, in the absence and presence of the single-stranded DNA (ssDNA), has been quantitatively examined using the rapid quench-flow technique, under single-turnover conditions. In the case of both the free helicase and the enzyme-ssDNA complexes, the mechanism is independent of the type of base of the cofactor or the DNA; the bimolecular association is followed by the reversible chemical hydrolysis and subsequent conformational transition of the enzyme-product complex. The NTP hydrolysis step is significantly faster for the purine than for the pyrimidine cofactor, both in the absence and in the presence of the DNA.

View Article and Find Full Text PDF

Allosteric interactions between the DNA- and NTP-binding sites of the Escherichia coli DnaB helicase engaged in the DnaB-DnaC complex and the mechanism of NTP hydrolysis by the complex have been examined using the fluorescence titration, analytical ultracentrifugation, and rapid quench-flow technique. Surprisingly, the ssDNA affinity of the DnaB-DnaC complex is independent of the structure of the phosphate group of the cofactor bound to the helicase. Thus, the DnaC protein eliminates the antagonistic allosteric effect of NTP and NDP on the ssDNA affinity of the enzyme.

View Article and Find Full Text PDF

The kinetic mechanism of the single-stranded DNA (ssDNA) recognition by the RepA hexameric replicative helicase of the plasmid RSF1010 and the nature of formed intermediates, in the presence of the ATP nonhydrolyzable analog, beta,gamma-imidoadenosine-5'-triphosphate (AMP-PNP), have been examined, using the fluorescence intensity and anisotropy stopped-flow and analytical ultracentrifugation methods. Association of the RepA hexamer with the ssDNA oligomers that engage the total DNA-binding site and exclusively the strong DNA-binding subsite is a minimum four-step mechanism [formula: see text]. Extreme stability of the RepA hexamer precludes any disintegration of its structure, and the sequential character of the mechanism indicates that the enzyme exists in a predominantly single conformation prior to the association with the nucleic acid.

View Article and Find Full Text PDF