Publications by authors named "Wlodek Strupinski"

Epitaxial bilayer graphene, grown by chemical vapor deposition on SiC substrates without silicon sublimation, is crucial material for graphene field effect transistors (GFETs). Rigorous characterization methods, such as atomic force microscopy and Raman spectroscopy, confirm the exceptional quality of this graphene. Post-nanofabrication, extensive evaluation of DC and high-frequency properties enable the extraction of critical parameters such as the current gain () and cut-off frequency () of hundred transistors.

View Article and Find Full Text PDF

Terahertz time-domain spectroscopy (THz-TDS) can be used to map spatial variations in electrical properties such as sheet conductivity, carrier density, and carrier mobility in graphene. Here, we consider wafer-scale graphene grown on germanium by chemical vapor deposition with non-uniformities and small domains due to reconstructions of the substrate during growth. The THz conductivity spectrum matches the predictions of the phenomenological Drude-Smith model for conductors with non-isotropic scattering caused by backscattering from boundaries and line defects.

View Article and Find Full Text PDF

Van der Waals heterostructures (vdWHSs) enable the fabrication of complex electronic devices based on two-dimensional (2D) materials. Ideally, these vdWHSs should be fabricated in a scalable and repeatable way and only in the specific areas of the substrate to lower the number of technological operations inducing defects and impurities. Here, we present a method of selective fabrication of vdWHSs via chemical vapor deposition by electron-beam (EB) irradiation.

View Article and Find Full Text PDF

In this work, we report the impact of substrate type on the morphological and structural properties of molybdenum disulfide (MoS) grown by chemical vapor deposition (CVD). MoS synthesized on a three-dimensional (3D) substrate, that is, SiO, in response to the change of the thermodynamic conditions yielded different grain morphologies, including triangles, truncated triangles, and circles. Simultaneously, MoS on graphene is highly immune to the modifications of the growth conditions, forming triangular crystals only.

View Article and Find Full Text PDF

Micro four-point probes (M4PP) provide rapid and automated lithography-free transport properties of planar surfaces including two-dimensional materials. We perform sheet conductance wafer maps of graphene directly grown on a 100 mm diameter SiC wafer using a multiplexed seven-point probe with minor additional measurement time compared to a four-point probe. Comparing the results of three subprobes we find that compared to a single-probe result, our measurement yield increases from 72%-84% to 97%.

View Article and Find Full Text PDF

We performed scanning thermal microscopy measurements on single layers of chemical-vapor-deposited (CVD) graphene supported by different substrates, namely, SiO, AlO, and PET using a double-scan technique to remove the contribution to the heat flux through the air and the cantilever. Then, by adopting a simple lumped-elements model, we developed a new method that allows determining, through a multistep numerical analysis, the equivalent thermal properties of thermally conductive coatings of nanometric thickness. In this specific case we found that our CVD graphene is "thermally equivalent", for heat injection perpendicular to the graphene planes, to a coating material of conductivity = 2.

View Article and Find Full Text PDF

Epitaxial graphene is a promising route to wafer-scale production of electronic graphene devices. Chemical vapor deposition of graphene on silicon carbide offers epitaxial growth with layer control but is subject to significant spatial and wafer-to-wafer variability. We use terahertz time-domain spectroscopy and micro four-point probes to analyze the spatial variations of quasi-freestanding bilayer graphene grown on 4 in.

View Article and Find Full Text PDF

Graphene is considered a record-performance nonlinear-optical material on the basis of numerous experiments. The observed strong nonlinear response ascribed to the refractive part of graphene's electronic third-order susceptibility χ cannot, however, be explained using the relatively modest χ value theoretically predicted for the 2D material. Here we solve this long-standing paradox and demonstrate that, rather than χ-based refraction, a complex phenomenon which we call saturable photoexcited-carrier refraction is at the heart of nonlinear-optical interactions in graphene such as self-phase modulation.

View Article and Find Full Text PDF

Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 10 atoms cm) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer.

View Article and Find Full Text PDF

Secondary ion mass spectrometry is applied to the depth profiling of the superlattice active region of lattice matched (∼9.2 μm) AlInAs/InGaAs/InP quantum cascade lasers. The developed measurement procedure is capable of characterizing the quality of each individual layer in the superlattice region, including layers as thin as 0.

View Article and Find Full Text PDF

The following invention - Graphene Enhanced Secondary Ion Mass Spectrometry - (pending European patent application no. EP 16461554.4) is related to a method of analysing a solid substrate by means of Secondary Ion Mass Spectrometry (SIMS).

View Article and Find Full Text PDF

Graphene functionalization with organics is expected to be an important step for the development of graphene-based materials with tailored electronic properties. However, its high chemical inertness makes difficult a controlled and selective covalent functionalization, and most of the works performed up to the date report electrostatic molecular adsorption or unruly functionalization. We show hereafter a mechanism for promoting highly specific covalent bonding of any amino-terminated molecule and a description of the operating processes.

View Article and Find Full Text PDF

In this Letter, we demonstrate an all-polarization-maintaining, stretched-pulse Tm-doped fiber laser generating ∼200  fs pulses centered at 1945 nm. As a saturable absorber, a graphene/poly(methyl methacrylate) composite was used. To the best of our knowledge, this is the first demonstration of stretched-pulse operation of a graphene-based fiber laser at 2 μm.

View Article and Find Full Text PDF

In recent years, the demand for high data rate wireless communications has increased dramatically, which requires larger bandwidth to sustain multi-user accessibility and quality of services. This can be achieved at millimeter wave frequencies. Graphene is a promising material for the development of millimeter-wave electronics because of its outstanding electron transport properties.

View Article and Find Full Text PDF

We report on the generation of noise-like pulse (NLP) trains in a Tm-doped fiber laser mode-locked by multilayer graphene saturable absorber. The spectral bandwidth obtained directly from the oscillator exceeds 60 nm, centered at 1950 nm, with 23.5 MHz repetition rate.

View Article and Find Full Text PDF

In this Letter, we demonstrate a graphene mode-locked, all-fiber Ho-doped fiber laser generating 1.3 nJ energy pulses directly from the oscillator. The graphene used as a saturable absorber was obtained via chemical vapor deposition on copper substrate and immersed in a poly(methyl methacrylate) support.

View Article and Find Full Text PDF

The successful integration of graphene into microelectronic devices is strongly dependent on the availability of direct deposition processes, which can provide uniform, large area and high quality graphene on nonmetallic substrates. As of today the dominant technology is based on Si and obtaining graphene with Si is treated as the most advantageous solution. However, the formation of carbide during the growth process makes manufacturing graphene on Si wafers extremely challenging.

View Article and Find Full Text PDF

We report on generation of 260 fs-short pulses with energy of 1.1 nJ from a fully fiberized, monolithic Tm-doped fiber laser system. The design comprises a simple, graphene-based ultrafast oscillator and an integrated all-fiber chirped pulse amplifier (CPA).

View Article and Find Full Text PDF

In this paper a stretched-pulse, mode-locked Er-doped fiber laser based on graphene saturable absorber (SA) is presented. A 60 layer graphene/polymer composite was used as a SA. The all-fiber dispersion managed laser resonator with the repetition frequency of 21.

View Article and Find Full Text PDF

We present a new approach to remove monolayer graphene transferred on top of a silicon-on-insulator (SOI) photonic integrated chip. Femtosecond laser ablation is used for the first time to remove graphene from SOI waveguides, whereas oxygen plasma etching through a metal mask is employed to peel off graphene from the grating couplers attached to the waveguides. We show by means of Raman spectroscopy and atomic force microscopy that the removal of graphene is successful with minimal damage to the underlying SOI waveguides.

View Article and Find Full Text PDF

We investigate the local surface potential and Raman characteristics of as-grown and ex-situ hydrogen intercalated quasi-free standing graphene on 4H-SiC(0001) grown by chemical vapor deposition. Upon intercalation, transport measurements reveal a change in the carrier type from n- to p-type, accompanied by a more than three-fold increase in carrier mobility, up to μh ≈ 4540 cm(2) V(-1) s(-1). On a local scale, Kelvin probe force microscopy provides a complete and detailed map of the surface potential distribution of graphene domains of different thicknesses.

View Article and Find Full Text PDF

We report an all-fiber, all-polarization maintaining (PM) ultrafast Tm-doped fiber laser mode-locked by a multilayer graphene-based saturable absorber (SA). The laser emits 603 fs-short pulses centered at 1876 nm wavelength with 6.6 nm of bandwidth and 41 MHz repetition rate.

View Article and Find Full Text PDF

Integration of graphene with Si microelectronics is very appealing by offering a potentially broad range of new functionalities. New materials to be integrated with the Si platform must conform to stringent purity standards. Here, we investigate graphene layers grown on copper foils by chemical vapor deposition and transferred to silicon wafers by wet etching and electrochemical delamination methods with respect to residual submonolayer metallic contaminations.

View Article and Find Full Text PDF

Sublimated graphene grown on SiC is an attractive material for scientific investigations. Nevertheless the self limiting process on the Si face and its sensitivity to the surface quality of the SiC substrates may be unfavourable for later microelectronic processes. On the other hand, chemical vapor deposited (CVD) graphene does not posses such disadvantages, so further experimental investigation is needed.

View Article and Find Full Text PDF

In this work we present for the first time, to the best of our knowledge, a passively synchronized thulium (Tm) and erbium (Er) doped fiber laser mode-locked by a common graphene saturable absorber (GSA). The laser consists of two ring resonators combined with a 90 cm long common fiber branch incorporating the saturable absorber (SA). Such laser generates optical solitons centered at 1558.

View Article and Find Full Text PDF