Background: The EF-hand Ca sensor protein S100A1 has been identified as a molecular regulator and enhancer of cardiac performance. The ability of S100A1 to recognize and modulate the activity of targets such as SERCA2a (sarcoplasmic reticulum Ca ATPase) and RyR2 (ryanodine receptor 2) in cardiomyocytes has mostly been ascribed to its hydrophobic C-terminal α-helix (residues 75-94). We hypothesized that a synthetic peptide consisting of residues 75 through 94 of S100A1 and an N-terminal solubilization tag (S100A1ct) could mimic the performance-enhancing effects of S100A1 and may be suitable as a peptide therapeutic to improve the function of diseased hearts.
View Article and Find Full Text PDFMesenchymal stromal cells (MSC) are promising stem cell therapy for treating cardiovascular and other degenerative diseases. Diabetes affects the functional capability of MSC and impedes cell-based therapy. Despite numerous studies, the impact of diabetes on MSC myocardial reparative activity, metabolic fingerprint, and the mechanism of dysfunction remains inadequately perceived.
View Article and Find Full Text PDFBackground: Heart failure (HF) is one of the leading causes of mortality worldwide. Extracellular vesicles, including small extracellular vesicles or exosomes, and their molecular cargo are known to modulate cell-to-cell communication during multiple cardiac diseases. However, the role of systemic extracellular vesicle biogenesis inhibition in HF models is not well documented and remains unclear.
View Article and Find Full Text PDFHistorically, a lower incidence of cardiovascular diseases (CVD) and related deaths in women as compared with men of the same age has been attributed to female sex hormones, particularly estrogen and its receptors. Autologous bone marrow stem cell (BMSC) clinical trials for cardiac cell therapy overwhelmingly included male patients. However, meta-analysis data from these trials suggest a better functional outcome in postmenopausal women as compared with aged-matched men.
View Article and Find Full Text PDFReperfusion after acute myocardial infarction further exaggerates cardiac injury and adverse remodeling. Irrespective of cardiac cell types, loss of specifically the α isoform of the protein kinase GSK-3 is protective in chronic cardiac diseases. However, the role of GSK-3α in clinically relevant ischemia/reperfusion (I/R)-induced cardiac injury is unknown.
View Article and Find Full Text PDFDiabetes enhances myocardial ischemic/reperfusion (MI/R) injury via an incompletely understood mechanism. Adiponectin (APN) is a cardioprotective adipokine suppressed by diabetes. However, how hypoadiponectinemia exacerbates cardiac injury remains incompletely understood.
View Article and Find Full Text PDFBiochem Soc Trans
April 2023
G protein-coupled receptors (GPCRs) are key modulators of cell signaling. Multiple GPCRs are present in the heart where they regulate cardiac homeostasis including processes such as myocyte contraction, heart rate and coronary blood flow. GPCRs are pharmacological targets for several cardiovascular disorders including heart failure (HF) such as beta-adrenergic receptor (βAR) blockers and angiotensin II receptor (AT1R) antagonists.
View Article and Find Full Text PDFBackground: Loss of brain-derived neurotrophic factor (BDNF)/TrkB (tropomyosin kinase receptor B) signaling accounts for brain and cardiac disorders. In neurons, β-adrenergic receptor stimulation enhances local BDNF expression. It is unclear if this occurs in a pathophysiological relevant manner in the heart, especially in the β-adrenergic receptor-desensitized postischemic myocardium.
View Article and Find Full Text PDFAortic stenosis (AS) is associated with left ventricular (LV) hypertrophy and heart failure (HF). There is a lack of therapies able to prevent/revert AS-induced HF. Beta3 adrenergic receptor (β3AR) signaling is beneficial in several forms of HF.
View Article and Find Full Text PDFAm J Physiol Heart Circ Physiol
December 2022
Extracellular purine nucleotides and nucleosides released from activated or injured cells influence multiple aspects of cardiac physiology and pathophysiology. Ectonucleoside triphosphate diphosphohydrolase-1 (ENTPD1; CD39) hydrolyzes released nucleotides and thereby regulates the magnitude and duration of purinergic signaling. However, the impact of CD39 activity on post-myocardial infarction (MI) remodeling is incompletely understood.
View Article and Find Full Text PDFJ Mol Cell Cardiol
November 2022
Cardiovascular diseases (CVDs) represent the leading cause of death globally. Despite major advances in the field of pharmacological CVD treatments, particularly in the field of heart failure (HF) research, case numbers and overall mortality remain high and have trended upwards over the last few years. Thus, identifying novel molecular targets for developing HF therapeutics remains a key research focus.
View Article and Find Full Text PDFThe critical role of G protein-coupled receptor kinase 2 (GRK2) in regulating cardiac function has been well documented for >3 decades. Targeting GRK2 has therefore been extensively studied as a novel approach to treating cardiovascular disease. However, little is known about its role in hemostasis and thrombosis.
View Article and Find Full Text PDFMyocardial infarction (MI) in diabetic patients results in higher mortality and morbidity. We and others have previously shown that bone marrow-endothelial progenitor cells (EPCs) promote cardiac neovascularization and attenuate ischemic injury. Lately, small extracellular vesicles (EVs) have emerged as major paracrine effectors mediating the benefits of stem cell therapy.
View Article and Find Full Text PDFBackground: Despite significantly reduced acute myocardial infarction (MI) mortality in recent years, ischemic heart failure continues to escalate. Therapeutic interventions effectively reversing pathological remodeling are an urgent unmet medical need. We recently demonstrated that AdipoR1 (APN [adiponectin] receptor 1) phosphorylation by GRK2 (G-protein-coupled receptor kinase 2) contributes to maladaptive remodeling in the ischemic heart.
View Article and Find Full Text PDFGRK5's catalytic activity in regulating basal and stressed cardiac function has not been studied. Herein, we studied knock-in mice in which GRK5 was mutated to render it catalytically inactive (K215R). At baseline, GRK5-K215R mice showed a marked decline in cardiac function with increased apoptosis and fibrosis.
View Article and Find Full Text PDFA significant number of patients infected with HIV-1 suffer from HIV-associated neurocognitive disorders (HAND) such as spatial memory impairments and learning disabilities (SMI-LD). SMI-LD is also observed in patients using combination antiretroviral therapy (cART). Our lab has demonstrated that the HIV-1 protein, gp120, promotes SMI-LD by altering mitochondrial functions and energy production.
View Article and Find Full Text PDFMitochondrial calcium (Ca) uptake couples changes in cardiomyocyte energetic demand to mitochondrial ATP production. However, excessive Ca uptake triggers permeability transition and necrosis. Despite these established roles during acute stress, the involvement of Ca signaling in cardiac adaptations to chronic stress remains poorly defined.
View Article and Find Full Text PDFPurpose: β-Adrenergic receptors (βAR) are essential targets for the treatment of heart failure (HF); however, chronic use of βAR agonists as positive inotropes to increase contractility in a G protein-dependent manner is associated with increased mortality. Alternatively, we previously reported that allosteric modulation of β2AR with the pepducin intracellular loop (ICL)1-9 increased cardiomyocyte contractility in a β-arrestin (βarr)-dependent manner, and subsequently showed that ICL1-9 activates the Ras homolog family member A (RhoA). Here, we aimed to elucidate both the proximal and downstream signaling mediators involved in the promotion of cardiomyocyte contractility in response to ICL1-9.
View Article and Find Full Text PDF