Objective: This phase I clinical trial assessed the use of autologous nasal chondrocyte tissue-engineered cartilage (N-TEC) for functional repair of nasal septal perforations (NSP).
Background: The most widely used technique to treat NSP, namely interposition grafting with a polydioxanone (PDS) plate combined with a deep temporal fascia (DTF) graft, is still suboptimal towards patient satisfaction and revision rates.
Methods: Patients ( n =5, all female, age range: 23-54 years) had a 0.
The development of medicinal products often continues throughout the different phases of a clinical study and may require challenging changes in raw and starting materials at later stages. Comparability between the product properties pre- and post-change thus needs to be ensured. Here, we describe and validate the regulatory compliant change of a raw material using the example of a nasal chondrocyte tissue-engineered cartilage (N-TEC) product, initially developed for treatment of confined knee cartilage lesions.
View Article and Find Full Text PDFThe reconstruction of complex midface defects is a challenging clinical scenario considering the high anatomical, functional, and aesthetic requirements. In this study, we proposed a surgical treatment to achieve improved oral rehabilitation and anatomical and functional reconstruction of a complex defect of the maxilla with a vascularized, engineered composite graft. The patient was a 39-year-old female, postoperative after left hemimaxillectomy for ameloblastic carcinoma in 2010 and tumor-free at the 5-year oncological follow-up.
View Article and Find Full Text PDFAdvanced Therapy Medicinal Products (ATMP) provide promising treatment options particularly for unmet clinical needs, such as progressive and chronic diseases where currently no satisfying treatment exists. Especially from the ATMP subclass of Tissue Engineered Products (TEPs), only a few have yet been translated from an academic setting to clinic and beyond. A reason for low numbers of TEPs in current clinical trials and one main key hurdle for TEPs is the cost and labor-intensive manufacturing process.
View Article and Find Full Text PDFNasal chondrocyte-derived engineered cartilage has been demonstrated to be safe and feasible for the treatment of focal cartilage lesions with promising preliminary evidences of efficacy. To ensure the quality of the products and processes, and to meet regulatory requirements, quality controls for identity, purity, and potency need to be developed. We investigated the use of Raman spectroscopy, a nondestructive analytical method that measures the chemical composition of samples, and statistical learning methods for the development of quality controls to quantitatively characterize the starting biopsy and final grafts.
View Article and Find Full Text PDFObjectives: Bioreactor-based production systems have the potential to overcome limitations associated with conventional tissue engineering manufacturing methods, facilitating regulatory compliant and cost-effective production of engineered grafts for widespread clinical use. In this work, we established a bioreactor-based manufacturing system for the production of cartilage grafts.
Materials & Methods: All bioprocesses, from cartilage biopsy digestion through the generation of engineered grafts, were performed in our bioreactor-based manufacturing system.
The effects of oncological treatment, congenital anomalies, traumatic injuries and post-infection damage critically require sufficient amounts of tissue for structural and functional surgical reconstructions. The patient’s own body is typically the gold standard source of transplant material, but in children autologous tissue is available only in small quantities and with severe morbidity at donor sites. Engineering of tissue grafts starting from a small amount of autologous material, combined with suitable surgical manipulation of the recipient site, is expected to enhance child and adolescent health, and to offer functional restoration for long-term wellbeing.
View Article and Find Full Text PDFBackground: Articular cartilage injuries have poor repair capacity, leading to progressive joint damage, and cannot be restored predictably by either conventional treatments or advanced therapies based on implantation of articular chondrocytes. Compared with articular chondrocytes, chondrocytes derived from the nasal septum have superior and more reproducible capacity to generate hyaline-like cartilage tissues, with the plasticity to adapt to a joint environment. We aimed to assess whether engineered autologous nasal chondrocyte-based cartilage grafts allow safe and functional restoration of knee cartilage defects.
View Article and Find Full Text PDFBackground: Autologous native cartilage from the nasal septum, ear, or rib is the standard material for surgical reconstruction of the nasal alar lobule after two-layer excision of non-melanoma skin cancer. We assessed whether engineered autologous cartilage grafts allow safe and functional alar lobule restoration.
Methods: In a first-in-human trial, we recruited five patients at the University Hospital Basel (Basel, Switzerland).
Since the late 1960s, surgeons and scientists envisioned use of tissue engineering to provide an alternative treatment for tissue and organ damage by combining biological and synthetic components in such a way that a long-lasting repair was established. In addition to the treatment, the patient would also benefit from reduced donor site morbidity and operation time as compared with the standard procedures. Tremendous efforts in basic research have been done since the late 1960s to better understand chondrocyte biology and cartilage maturation and to fulfill the growing need for tissue-engineered cartilage in reconstructive, trauma, and orthopedic surgery.
View Article and Find Full Text PDFThis study was designed to determine if the maturation stage of engineered cartilage implanted in a goat model of cartilage injury influences the repair outcome. Goat engineered cartilage was generated from autologous chondrocytes cultured in hyaluronic acid scaffolds using 2 d, 2 weeks or 6 weeks of pre-culture and implanted above hydroxyapatite/hyaluronic acid sponges into osteochondral defects. Control defects were left untreated or treated with cell-free scaffolds.
View Article and Find Full Text PDFThe in vitro engineering of functionally developed biological cartilage substitutes, based on cells and appropriate structural and soluble factors, is an attractive concept for the clinical treatment of cartilage injuries and degeneration. The field of cartilage tissue engineering has developed strongly in the last few years, bringing together the scientific, clinical and commercial interests of highly interdisciplinary communities. However, engineered grafts are still far from being the standard of care for cartilage repair.
View Article and Find Full Text PDFFebit AG develops an integrated benchtop instrument for in situ microarrays preparation, hybridization, readout and data analysis.
View Article and Find Full Text PDFConcepts and results are described for the use of a single, but extremely flexible, probing tool to address a wide variety of genomic questions. This is achieved by transforming genomic questions into a software file that is used as the design scheme for potentially any genomic assay in a microarray format. Microarray fabrication takes place in three-dimensional microchannel reaction carriers by in situ synthesis based on spatial light modulation.
View Article and Find Full Text PDF