Cardiac involvement (CI) in phosphomannomutase 2-congenital disorders of glycosylation (PMM2-CDG) is part of the multisystemic presentation contributing to high mortality rates. The most common cardiac manifestations are pericardial effusion, cardiomyopathy, and structural heart defects. A genotype-phenotype correlation with organ involvement has not yet been described.
View Article and Find Full Text PDFAlkaptonuria is characterized by the accumulation of homogentisic acid which causes dark coloration of urine upon standing, ochronosis, and arthritis. A 4-year old child was referred to our pediatric nephrologist with hyperoxaluria and a history of unexplained pink-to-brown discolouration of his diapers associated with a brown-staining of clothes and skin since he was six months old. He had no other symptoms and his past medical history only included minor child illnesses.
View Article and Find Full Text PDFBackground & Aims: Cystic fibrosis (CF) is considered a multisystemic disorder in which CF-associated liver disease (CFLD) is the third most common cause of mortality. Currently, no effective treatment is available for CFLD because its pathophysiology is still unclear. Interestingly, CFLD exhibits identical vascular characteristics as non-cirrhotic portal hypertension, recently classified as porto-sinusoidal vascular disorders (PSVD).
View Article and Find Full Text PDFCongenital disorders of glycosylation (CDG) are a large family of rare disorders affecting the different glycosylation pathways. Defective glycosylation can affect any organ, with varying symptoms among the different CDG. Even between individuals with the same CDG there is quite variable severity.
View Article and Find Full Text PDFAbnormal polyol metabolism is predominantly associated with diabetes, where excess glucose is converted to sorbitol by aldose reductase (AR). Recently, abnormal polyol metabolism has been implicated in phosphomannomutase 2 congenital disorder of glycosylation (PMM2-CDG) and an AR inhibitor, epalrestat, proposed as a potential therapy. Considering that the PMM2 enzyme is not directly involved in polyol metabolism, the increased polyol production and epalrestat's therapeutic mechanism in PMM2-CDG remained elusive.
View Article and Find Full Text PDFATP6AP1-CDG is an X-linked disorder typically characterized by hepatopathy, immunodeficiency, and an abnormal type II transferrin glycosylation pattern. Here, we present 11 new patients and clinical updates with biochemical characterization on one previously reported patient. We also document intrafamilial phenotypic variability and atypical presentations, expanding the symptomatology of ATP6AP1-CDG to include dystonia, hepatocellular carcinoma, and lysosomal abnormalities on hepatic histology.
View Article and Find Full Text PDFBackground: Olipudase alfa is a recombinant human acid sphingomyelinase (ASM) enzyme replacement therapy (ERT) for non-central-nervous-system manifestations of acid sphingomyelinase deficiency (ASMD). We report 2-year cumulative safety and efficacy data after olipudase alfa treatment in 20 children (four adolescents [12-17 year], nine children [6-11 year], and seven infants/early child [1-5 year]) with baseline splenomegaly and growth deficits who completed the 1-year ASCEND-Peds clinical trial (NCT02292654) and who continue to receive olipudase alfa in a long-term study (NCT02004704). Efficacy endpoints include spleen and liver volumes, diffusing capacity of the lung for carbon monoxide (DL), high-resolution computed tomography (HRCT) lung imaging, lipid profiles, liver function tests, and height Z-scores.
View Article and Find Full Text PDFBackground And Study Aims: Liver abscesses are rare in the Western pediatric population and data on predisposing factors and etiology are scarce. We aimed to describe predisposing factors, microbiological characteristics, and treatment.
Patients And Methods: Retrospective analysis of children admitted to two tertiary care hospitals in Belgium from 1 January 1996 to 31 December 2019.
Introduction: Primary mitochondrial diseases (PMD) are a large, heterogeneous group of genetic disorders affecting mitochondrial function, mostly by disrupting the oxidative phosphorylation (OXPHOS) system. Understanding the cellular metabolic re-wiring occurring in PMD is crucial for the development of novel diagnostic tools and treatments, as PMD are often complex to diagnose and most of them currently have no effective therapy.
Objectives: To characterize the cellular metabolic consequences of OXPHOS dysfunction and based on the metabolic signature, to design new diagnostic and therapeutic strategies.
Inborn errors of metabolism (IEMs) are rare diseases caused by a defect in a single enzyme, co-factor, or transport protein. For most IEMs, no effective treatment is available and the exact disease mechanism is unknown. The application of metabolomics and, more specifically, tracer metabolomics in IEM research can help to elucidate these disease mechanisms and hence direct novel therapeutic interventions.
View Article and Find Full Text PDFBackground: This case report describes a child born with both cystic fibrosis (CF) and alpha-1 antitrypsin deficiency (A1ATD). Both are autosomal recessive inherited diseases, mainly affecting the lungs and the liver. The combination of both diseases together is rare and may lead to a fulminant disease with limited life span.
View Article and Find Full Text PDFPurpose: TRAPPC9 deficiency is an autosomal recessive disorder mainly associated with intellectual disability (ID), microcephaly, and obesity. Previously, TRAPPC9 deficiency has not been associated with biochemical abnormalities.
Methods: Exome sequencing was performed in 3 individuals with ID and dysmorphic features.
PMM2-CDG is a rare disease, causing hypoglycosylation of multiple proteins, hence preventing full functionality. So far, no direct genotype-phenotype correlations have been identified. We carried out a retrospective cohort study on 26 PMM2-CDG patients.
View Article and Find Full Text PDFCongenital disorders of glycosylation (CDGs) form a group of rare diseases characterized by hypoglycosylation. We here report the identification of 16 individuals from nine families who have either inherited or de novo heterozygous missense variants in STT3A, leading to an autosomal-dominant CDG. STT3A encodes the catalytic subunit of the STT3A-containing oligosaccharyltransferase (OST) complex, essential for protein N-glycosylation.
View Article and Find Full Text PDFObjective: Epalrestat, an aldose reductase inhibitor increases phosphomannomutase (PMM) enzyme activity in a PMM2-congenital disorders of glycosylation (CDG) worm model. Epalrestat also decreases sorbitol level in diabetic neuropathy. We evaluated the genetic, biochemical, and clinical characteristics, including the Nijmegen Progression CDG Rating Scale (NPCRS), urine polyol levels and fibroblast glycoproteomics in patients with PMM2-CDG.
View Article and Find Full Text PDFFibrosis, neurodegeneration, and cerebral angiomatosis (FINCA, MIM#618278) is a rare clinical condition caused by bi-allelic variants in NHL repeat containing protein 2 (NHLRC2, MIM*618277). Pulmonary disease may be the presenting sign and the few patients reported so far, all deceased in early infancy. Exome sequencing was performed on patients with childhood interstitial lung disease (chILD) and additional neurological features.
View Article and Find Full Text PDFPMM2-CDG is the most common congenital disorder of glycosylation (CDG) accounting for almost 65% of known CDG cases affecting N-glycosylation. Abnormalities in N-glycosylation could have a negative impact on many endocrine axes. There is very little known on the effect of impaired N-glycosylation on the hypothalamic-pituitary-adrenal axis function and whether CDG patients are at risk of secondary adrenal insufficiency and decreased adrenal cortisol production.
View Article and Find Full Text PDFBackground: Heimler syndrome (OMIM number #234580 and #616617) is a rare condition comprising sensorineural hearing loss (SNHL), nail abnormalities and amelogenesis imperfecta. In addition, patients with this syndrome can have retinal dystrophies. Heimler syndrome is caused by bi-allelic pathogenic variants in the or gene.
View Article and Find Full Text PDFThe mesenchymal conversion of epithelial cells (EMT) has been suggested as a potential contributor in cystic fibrosis (CF) disease progression. Endothelial cells (EndCs), the cells lining blood vessels, express functional CFTR and CFTR impairment promotes endothelial activation and dysfunction. However, if the mesenchymal switch also exists in CF EndCs remains uncharacterized.
View Article and Find Full Text PDF