Publications by authors named "Withers P"

The particulate properties of α-lactose monohydrate (αLMH), an excipient and carrier for pharmaceuticals, is important for the design, formulation and performance of a wide range of drug products. Here an integrated multi-scale workflow provides a detailed molecular and inter-molecular (synthonic) analysis of its crystal morphology, surface chemistry and surface energy. Predicted morphologies are validated in 3D through X-ray diffraction (XCT) contrast tomography.

View Article and Find Full Text PDF
Article Synopsis
  • Phosphorus pollution in freshwater poses a significant threat to water quality and aquatic life, primarily driven by agriculture and wastewater management.
  • A study in the River Stour catchment of Dorset, England, used Substance Flow Analysis to measure phosphorus input pressures from agricultural practices and human activities, showing that agricultural phosphorus inputs depend largely on livestock feed imports and human populations.
  • To improve water quality, the study suggests enhancing wastewater phosphorus removal and reducing excess agricultural phosphorus, indicating that addressing agricultural surplus could significantly lower river phosphorus concentrations, although it would still exceed ideal levels for controlling eutrophication.
View Article and Find Full Text PDF

Much of what has been discovered concerning neurophysiological mechanisms can be credited to ex vivo biomedical experiments. Beyond these discoveries, ex vivo research techniques have enhanced the global understanding of human physiology and pathology in almost every biomedical specialty. Naturally, ex vivo experiments are among the most desired methods of research, particularly in the field of neuroscience.

View Article and Find Full Text PDF

We used thermal imagining and heat balance modelling to examine the thermal ecology of wild mammals, using the diurnal marsupial numbat (Myrmecobius fasciatus) as a model. Body surface temperature was measured using infra-red thermography at environmental wet and dry bulb temperatures of 11.7-29°C and 16.

View Article and Find Full Text PDF

Tri-beam microscopes comprising a fs-laser beam, a Xe+ plasma focused ion beam (PFIB) and an electron beam all in one chamber open up exciting opportunities for site-specific correlative microscopy. They offer the possibility of rapid ablation and material removal by fs-laser, subsequent polishing by Xe-PFIB milling and electron imaging of the same area. While tri-beam systems are capable of probing large (mm) volumes providing high resolution microscopical characterisation of 2D and 3D images across exceptionally wide range of materials and biomaterials applications, presenting high quality/low damage surfaces to the electron beam can present a significant challenge, especially given the large parameter space for optimisation.

View Article and Find Full Text PDF

Grid-based systematic search methods are used to investigate molecule-molecule, molecule-surface, and surface-surface contributions to interparticle interactions in order to identify the crystal faces that most strongly affect particle behavior during powder blend formulation and delivery processes. The model system comprises terbutaline sulfate (TBS) as an active pharmaceutical ingredient (API) and α-form lactose monohydrate (LMH). A combination of systematic molecular modeling and X-ray computed tomography (XCT) is used to determine not only the adhesive and cohesive interparticle energies but, also the agglomeration behavior during manufacturing and de-agglomeration behavior during delivery after inhalation.

View Article and Find Full Text PDF

Background: Patients presenting to the ambulance services with cardiovascular complaints are common, and as such, represent a notable proportion of paramedic clinical practice. Numerous texts refer to a system-based approach to cardiovascular assessment, however the application by paramedics is scarcely researched. As such, this article aims to quantify paramedic confidence levels regarding an examination of a patient with a cardiovascular complaint.

View Article and Find Full Text PDF

This paper investigates the effects of defects on tensile failure of additive manufactured AlSi10Mg alloy focusing particularly on the role of large pancake shaped loss of fusion (LOF) defects lying perpendicular to the build direction (BD). Time-lapse in situ synchrotron radiation X-ray micro-computed tomography during straining reveals how, when tested parallel to the BD, the LOF defects extend laterally with straining connecting to other defects and giving rise to low plasticity and an essentially brittle failure mode. When they are aligned edge-on to the straining direction, failure is characterised by a ductile cup-cone failure with significant elongation of the defects axially and extensive necking prior to failure.

View Article and Find Full Text PDF

Dry powder inhalers (DPI) are important for topical drug delivery to the lungs, but characterising the pre-aerosolised powder microstructure is a key initial step in understanding the post-aerosolised blend performance. In this work, we characterise the pre-aerosolised 3D microstructure of an inhalation blend using correlative multi-scale X-ray Computed Tomography (XCT), identifying lactose and drug-rich phases at multiple length scales on the same sample. The drug-rich phase distribution across the sample is shown to be homogeneous on a bulk scale but heterogeneous on a particulate scale, with individual clusters containing different amounts of drug-rich phase, and different parts of a carrier particle coated with different amounts of drug-rich phase.

View Article and Find Full Text PDF

The Galileo mission to Jupiter revealed that Europa is an ocean world. The Galileo magnetometer experiment in particular provided strong evidence for a salty subsurface ocean beneath the ice shell, likely in contact with the rocky core. Within the ice shell and ocean, a number of tectonic and geodynamic processes may operate today or have operated at some point in the past, including solid ice convection, diapirism, subsumption, and interstitial lake formation.

View Article and Find Full Text PDF

Background: This data paper describes the results of a 10-year scientific investigation of a biodiversity-rich private golf estate in south-eastern France in partnership with PatriNat (Office français de la biodiversité/Centre national de la recherche scientifique/Muséum national d'Histoire naturelle, Institut de Recherche pour le Développement). In total, 3,160 species and subspecies, including 1,796 arthropods and 1,049 flora, were inventoried and 65 habitat types were surveyed and mapped. This project is the first All taxa biodiversity inventory (ATBI) in a private property in France with all information available in open data.

View Article and Find Full Text PDF

The Juno spacecraft has been in orbit around Jupiter since 2016. Two flybys of Ganymede were executed in 2021, opportunities realized by evolution of Juno's polar orbit over the intervening 5 years. The geometry of the close flyby just prior to the 34th perijove pass by Jupiter brought the spacecraft inside Ganymede's unique magnetosphere.

View Article and Find Full Text PDF

Insects breathe using one or a combination of three gas exchange patterns; continuous, cyclic and discontinuous, which vary in their rates of exchange of oxygen, carbon dioxide and water. In general, there is a trade-off between lowering gas exchange using discontinuous exchange that limits water loss at the cost of lower metabolic rate. These patterns and hypotheses for the evolution of discontinuous exchange have been examined for relatively large insects (>20 mg) over relatively short periods (<4 h), but smaller insects and longer time periods have yet to be examined.

View Article and Find Full Text PDF

We identify for wild, free-living short-beaked echidnas () a novel evaporative window, along with thermal windows, and demonstrate the insulating properties of the spines, using infrared thermography. The moist tip of their beak, with an underlying blood sinus, functions as a wet bulb globe thermometer, maximizing evaporative heat loss via an evaporative window. The ventral surface and insides of the legs are poorly insulated sites that act as postural thermal windows, while the spines provide flexible insulation (depending on piloerection).

View Article and Find Full Text PDF

Chemical staining of biological specimens is commonly utilised to boost contrast in soft tissue structures, but unambiguous identification of staining location and distribution is difficult without confirmation of the elemental signature, especially for chemicals of similar density contrast. Hyperspectral X-ray computed tomography (XCT) enables the non-destructive identification, segmentation and mapping of elemental composition within a sample. With the availability of hundreds of narrow, high resolution (~ 1 keV) energy channels, the technique allows the simultaneous detection of multiple contrast agents across different tissue structures.

View Article and Find Full Text PDF

Background: Residual stresses have a "hidden" character because they exist in a material without the presence of any external loads. They cannot easily be added or subtracted in a quantified manner, as is done when measuring applied stresses, and so are much more challenging to measure.

Objective: The objective here is to identify and describe the various features that make residual stress measurement methods challenging and to consider the ways that these challenges can be addressed in practice.

View Article and Find Full Text PDF

Cracking from a fine equiaxed zone (FQZ), often just tens of microns across, plagues the welding of 7000 series aluminum alloys. Using a multiscale correlative methodology, from the millimeter scale to the nanoscale, we shed light on the strengthening mechanisms and the resulting intergranular failure at the FQZ. We show that intergranular AlCuMg phases give rise to cracking by micro-void nucleation and subsequent link-up due to the plastic incompatibility between the hard phases and soft (low precipitate density) grain interiors in the FQZ.

View Article and Find Full Text PDF

Food systems worldwide are vulnerable to Phosphorus (P) supply disruptions and price fluctuations. Current P use is also highly inefficient, generating large surpluses and pollution. Global food security and aquatic ecosystems are in jeopardy if transformative action is not taken.

View Article and Find Full Text PDF

Conradie (2020) recently modelled the vulnerability of Australian arid birds to a changing climate. While the approach used by Conradie (2020) is valuable, we argue that key assumptions in their study are poorly supported and the risks of a changing climate to arid zone avifauna are consequently overstated.

View Article and Find Full Text PDF

The UK food system is reliant on imported phosphorus (P) to meet food production demand, though inefficient use and poor stewardship means P is currently accumulating in agricultural soils, wasted or lost with detrimental impacts on aquatic environments. This study presents the results of a detailed P Substance Flow Analysis for the UK food system in 2018, developed in collaboration with industry and government, with the key objective of highlighting priority areas for system interventions to improve the sustainability and resilience of P use in the UK food system. In 2018 the UK food system imported 174.

View Article and Find Full Text PDF

AbstractWe show here that evaporative water loss (EWL) is constant over a wide range of ambient relative humidity for two species of small, mesic habitat dasyurid marsupials ( and ) below thermoneutrality (20°C) and within thermoneutrality (30°C). This independence of EWL from the water vapor pressure deficit between the animal and its environment indicates that EWL is physiologically controlled by both species. The magnitude of this control of EWL was similar to that of two other small marsupials from more arid habitats, which combined with the observation that there were no effects of relative humidity on body temperature or metabolic rate, suggests that control of EWL is a consequence of precise thermoregulation to maintain heat balance rather than a water-conserving strategy at low relative humidities.

View Article and Find Full Text PDF

Aerogels are attracting increasing interest due to their functional properties, such as lightweight and high porosity, which make them promising materials for energy storage and advanced composites. Compressive deformation allows the nano- and microstructure of lamellar freeze-cast aerogels to be tailored toward the aforementioned applications, where a 3D nanostructure of closely spaced, aligned sheets is desired. Quantitatively characterizing their microstructural evolution during compression is needed to allow optimization of manufacturing, understand in-service structural changes, and determine how aerogel structure relates to functional properties.

View Article and Find Full Text PDF

Since the first faunistic study of the Pipunculidae (Diptera) of mainland France in 2006, new material from 37 natural sites and four private collections has been evaluated by the authors of this article. A total of 5739 specimens of Pipunculidae collected in France were examined, of which 5214 were identified to species by the authors, for a total of 114 species. DNA analyses were also carried out on some specimens to confirm their morphological identifications.

View Article and Find Full Text PDF

Here we apply hyperspectral bright field imaging to collect computed tomographic images with excellent energy resolution (~ 1 keV), applying it for the first time to map the distribution of stain in a fixed biological sample through its characteristic K-edge. Conventionally, because the photons detected at each pixel are distributed across as many as 200 energy channels, energy-selective images are characterised by low count-rates and poor signal-to-noise ratio. This means high X-ray exposures, long scan times and high doses are required to image unique spectral markers.

View Article and Find Full Text PDF