Single photon sources are fundamental building blocks for quantum communication and computing technologies. In this work, we present a device geometry consisting of gold pillars embedded in a van der Waals heterostructure of graphene, hexagonal boron nitride, and tungsten diselenide. The gold pillars serve to both generate strain and inject charge carriers, allowing us to simultaneously demonstrate the positional control and electrical pumping of a single photon emitter.
View Article and Find Full Text PDFWe investigated the valley Zeeman splitting of excitonic peaks in the microphotoluminescence (μPL) spectra of high-quality hBN/WS/MoSe/hBN heterostructures under perpendicular magnetic fields up to 20 T. We identify two neutral exciton peaks in the μPL spectra; the lower-energy peak exhibits a reduced -factor relative to that of the higher energy peak and much lower than the recently reported values for interlayer excitons in other van der Waals (vdW) heterostructures. We provide evidence that such a discernible -factor stems from the spatial confinement of the exciton in the potential landscape created by the moiré pattern due to lattice mismatch or interlayer twist in heterobilayers.
View Article and Find Full Text PDFTwo-dimensional (2D) van der Waals magnets provide new opportunities for control of magnetism at the nanometre scale via mechanisms such as strain, voltage and the photovoltaic effect. Ultrafast laser pulses promise the fastest and most energy efficient means of manipulating electron spin and can be utilized for information storage. However, little is known about how laser pulses influence the spins in 2D magnets.
View Article and Find Full Text PDFStrain plays an important role for the optical properties of monolayer transition metal dichalcogenides (TMDCs). Here, we investigate strain effects in a monolayer MoSe sample with a large bubble region using μ-Raman, second harmonic generation (SHG), μ-photoluminescence and magneto μ-photoluminescence at low temperature. Remarkably, our results reveal the presence of a non-uniform strain field and the observation of emission peaks at lower energies which are the signatures of exciton and trion quasiparticles red-shifted by strain effects in the bubble region, in agreement with our theoretical predictions.
View Article and Find Full Text PDFWe report optically detected magnetic resonance (ODMR) measurements of an ensemble of spin-1 negatively charged boron vacancies in hexagonal boron nitride. The photoluminescence decay rates are spin-dependent, with intersystem crossing rates of 1.02 ns and 2.
View Article and Find Full Text PDFAdvanced van der Waals (vdW) heterostructure devices rely on the incorporation of high quality dielectric materials which need to possess a low defect density as well as being atomically smooth and uniform. In this work we explore the use of talc dielectrics as a potentially clean alternative substrate to hexagonal boron nitride (hBN) for few-layer transition metal dichalcogenide (TMDC) transistors and excitonic TMDC monolayers. We find that talc dielectric transistors show small hysteresis which does not depend strongly on sweep rate and show negligible leakage current for our studied dielectric thicknesses.
View Article and Find Full Text PDFInterlayer (IL) excitons, comprising electrons and holes residing in different layers of van der Waals bonded two-dimensional semiconductors, have opened new opportunities for room-temperature excitonic devices. So far, two-dimensional IL excitons have been realized in heterobilayers with type-II band alignment. However, the small oscillator strength of the resulting IL excitons and difficulties with producing heterostructures with definite crystal orientation over large areas have challenged the practical applicability of this design.
View Article and Find Full Text PDFSemiconducting ferromagnet-nonmagnet interfaces in van der Waals heterostructures present a unique opportunity to investigate magnetic proximity interactions dependent upon a multitude of phenomena including valley and layer pseudospins, moiré periodicity, or exceptionally strong Coulomb binding. Here, we report a charge-state dependency of the magnetic proximity effects between MoSe and CrBr in photoluminescence, whereby the valley polarization of the MoSe trion state conforms closely to the local CrBr magnetization, while the neutral exciton state remains insensitive to the ferromagnet. We attribute this to spin-dependent interlayer charge transfer occurring on timescales between the exciton and trion radiative lifetimes.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2020
Highly nonlinear optical materials with strong effective photon-photon interactions are required for ultrafast and quantum optical signal processing circuitry. Here we report strong Kerr-like nonlinearities by employing efficient optical transitions of charged excitons (trions) observed in semiconducting transition metal dichalcogenides (TMDCs). By hybridising trions in monolayer MoSe at low electron densities with a microcavity mode, we realise trion-polaritons exhibiting significant energy shifts at small photon fluxes due to phase space filling.
View Article and Find Full Text PDFTo fully exploit van der Waals materials and their vertically stacked heterostructures, new mass-scalable production routes which are low cost but preserve the high electronic and optical quality of the single crystals are required. Here, we demonstrate an approach to realise a variety of functional heterostructures based on van der Waals nanocrystal films produced through the mechanical abrasion of bulk powders. We find significant performance enhancements in abraded heterostructures compared to those fabricated through inkjet printing of nanocrystal dispersions.
View Article and Find Full Text PDFMonolayer transition metal dichalcogenides (TMDs) hold great promise for future information processing applications utilizing a combination of electron spin and valley pseudospin. This unique spin system has led to observation of the valley Zeeman effect in neutral and charged excitonic resonances under applied magnetic fields. However, reported values of the trion valley Zeeman splitting remain highly inconsistent across studies.
View Article and Find Full Text PDFThe intriguing physics of carrier-carrier interactions, which likewise affect the operation of light emitting devices, stimulate the research on semiconductor structures at high densities of excited carriers, a limit reachable at large pumping rates or in systems with long-lived electron-hole pairs. By electrically injecting carriers into WSe/MoS type-II heterostructures which are indirect in real and k-space, we establish a large population of typical optically silent interlayer excitons. Here, we reveal their emission spectra and show that the emission energy is tunable by an applied electric field.
View Article and Find Full Text PDFSimilar to silicon-based semiconductor devices, van der Waals heterostructures require integration with high- oxides. Here, we demonstrate a method to embed and pattern a multifunctional few-nanometer-thick high- oxide within various van der Waals devices without degrading the properties of the neighboring two-dimensional materials. This transformation allows for the creation of several fundamental nanoelectronic and optoelectronic devices, including flexible Schottky barrier field-effect transistors, dual-gated graphene transistors, and vertical light-emitting/detecting tunneling transistors.
View Article and Find Full Text PDFThe observation of novel physical phenomena such as Hofstadter's butterfly, topological currents, and unconventional superconductivity in graphene has been enabled by the replacement of SiO with hexagonal boron nitride (hBN) as a substrate and by the ability to form superlattices in graphene/hBN heterostructures. These devices are commonly made by etching the graphene into a Hall-bar shape with metal contacts. The deposition of metal electrodes, the design, and specific configuration of contacts can have profound effects on the electronic properties of the devices possibly even affecting the alignment of graphene/hBN superlattices.
View Article and Find Full Text PDFTwo-dimensional transition metal dichalcogenides (TMDs) provide a unique possibility to generate and read-out excitonic valley coherence using linearly polarized light, opening the way to valley information transfer between distant systems. However, these excitons have short lifetimes (ps) and efficiently lose their valley coherence via the electron-hole exchange interaction. Here, we show that control of these processes can be gained by embedding a monolayer of WSe in an optical microcavity, forming part-light-part-matter exciton-polaritons.
View Article and Find Full Text PDFObjective: Psychiatric inpatients present with multiple difficulties, including comorbid diagnoses, social problems, trauma, and high levels of psychiatric medication use. All of these factors have been associated with poorer cognitive functioning, which is rarely assessed. The aim of this study was to examine the acceptability of a brief cognitive screening assessment, and identify the cognitive and psychological profile of current psychiatric inpatients.
View Article and Find Full Text PDFVertically stacked van der Waals heterostructures are a lucrative platform for exploring the rich electronic and optoelectronic phenomena in two-dimensional materials. Their performance will be strongly affected by impurities and defects at the interfaces. Here we present the first systematic study of interfaces in van der Waals heterostructure using cross-sectional scanning transmission electron microscope (STEM) imaging.
View Article and Find Full Text PDFBackground: Open Dialogue (OD) is a Finnish social network based model of care, with practice and organisational aspects. Peer-supported Open Dialogue (POD) is a UK version involving peer workers, whose contributions include building on fragmented social networks. Fifty-four NHS staff undertook the first training in POD between 2014 and 2015.
View Article and Find Full Text PDFWe report on experimental investigations of an electrically driven WSe based light-emitting van der Waals heterostructure. We observe a threshold voltage for electroluminescence significantly lower than the corresponding single particle band gap of monolayer WSe. This observation can be interpreted by considering the Coulomb interaction and a tunneling process involving excitons, well beyond the picture of independent charge carriers.
View Article and Find Full Text PDFExploiting the properties of two-dimensional crystals requires a mass production method able to produce heterostructures of arbitrary complexity on any substrate. Solution processing of graphene allows simple and low-cost techniques such as inkjet printing to be used for device fabrication. However, the available printable formulations are still far from ideal as they are either based on toxic solvents, have low concentration, or require time-consuming and expensive processing.
View Article and Find Full Text PDFLarge-scale growth of high-quality hexagonal boron nitride has been a challenge in two-dimensional-material-based electronics. Herein, we present wafer-scale and wrinkle-free epitaxial growth of multilayer hexagonal boron nitride on a sapphire substrate by using high-temperature and low-pressure chemical vapor deposition. Microscopic and spectroscopic investigations and theoretical calculations reveal that synthesized hexagonal boron nitride has a single rotational orientation with AA' stacking order.
View Article and Find Full Text PDFMicroelectromechanical systems, which can be moved or rotated with nanometre precision, already find applications in such fields as radio-frequency electronics, micro-attenuators, sensors and many others. Especially interesting are those which allow fine control over the motion on the atomic scale because of self-alignment mechanisms and forces acting on the atomic level. Such machines can produce well-controlled movements as a reaction to small changes of the external parameters.
View Article and Find Full Text PDFMonolayers of molybdenum and tungsten dichalcogenides are direct bandgap semiconductors, which makes them promising for optoelectronic applications. In particular, van der Waals heterostructures consisting of monolayers of MoS2 sandwiched between atomically thin hexagonal boron nitride (hBN) and graphene electrodes allows one to obtain light emitting quantum wells (LEQWs) with low-temperature external quantum efficiency (EQE) of 1%. However, the EQE of MoS2- and MoSe2-based LEQWs shows behavior common for many other materials: it decreases fast from cryogenic conditions to room temperature, undermining their practical applications.
View Article and Find Full Text PDFLayered materials can be assembled vertically to fabricate a new class of van der Waals heterostructures a few atomic layers thick, compatible with a wide range of substrates and optoelectronic device geometries, enabling new strategies for control of light-matter coupling. Here, we incorporate molybdenum diselenide/hexagonal boron nitride (MoSe2/hBN) quantum wells in a tunable optical microcavity. Part-light-part-matter polariton eigenstates are observed as a result of the strong coupling between MoSe2 excitons and cavity photons, evidenced from a clear anticrossing between the neutral exciton and the cavity modes with a splitting of 20 meV for a single MoSe2 monolayer, enhanced to 29 meV in MoSe2/hBN/MoSe2 double-quantum wells.
View Article and Find Full Text PDF