Publications by authors named "Wiszniewski W"

Background: MECP2 Duplication Syndrome, also known as X-linked intellectual developmental disorder Lubs type (MRXSL; MIM: 300260), is a neurodevelopmental disorder caused by copy number gains spanning MECP2. Despite varying genomic rearrangement structures, including duplications and triplications, and a wide range of duplication sizes, no clear correlation exists between DNA rearrangement and clinical features. We had previously demonstrated that up to 38% of MRXSL families are characterized by complex genomic rearrangements (CGRs) of intermediate complexity (2 ≤ copy number variant breakpoints < 5), yet the impact of these genomic structures on regulation of gene expression and phenotypic manifestations have not been investigated.

View Article and Find Full Text PDF

CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear.

View Article and Find Full Text PDF

Introduction: Engaging patients living with or at risk of aortic dissection via the Aortic Dissection Collaborative, physician education in vascular genetics was identified as a research priority. We surveyed vascular surgeons to characterize practice patterns, motivations, and barriers regarding aortopathy genetic testing.

Methods: An anonymous 27-question survey was distributed on social media platforms between November and December 2022.

View Article and Find Full Text PDF

Coenzyme Q5 (COQ5), a C-methyltransferase, modifies coenzyme Q10 (COQ10) during biosynthesis and interacts with polyA-tail regulating zinc-finger protein ZC3H14 in neural development. Here, we present a fifth patient (a third family) worldwide with neurodevelopmental and physiological symptoms including COQ10 deficiency. Our patient harbors one novel c.

View Article and Find Full Text PDF

The Healthy Oregon Project (HOP) is a statewide effort that aims to build a large research repository and influence the health of Oregonians through providing no-cost genetic screening to participants for a next-generation sequencing 32-gene panel comprising genes related to inherited cancers and familial hypercholesterolemia. This type of unbiased population screening can detect at-risk individuals who may otherwise be missed by conventional medical approaches. However, challenges exist for this type of high-throughput testing in an academic setting, including developing a low-cost high-efficiency test and scaling up the clinical laboratory for processing large numbers of samples.

View Article and Find Full Text PDF
Article Synopsis
  • DExD/H-box RNA helicases (DDX/DHX) are a large gene family linked to neurodevelopmental disorders and cancer, with DHX9 being a key member associated with various phenotypes.
  • Analysis of individuals with rare DHX9 variants revealed a range of neurodevelopmental disorder traits and the genetic basis for these phenotypes correlated with the type of variant.
  • Experimental investigations showed that DHX9 variants impact its cellular localization and function, linking them to conditions like Charcot-Marie-Tooth disease and highlighting DHX9's role in neurodevelopment and neuronal stability.
View Article and Find Full Text PDF

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency.

View Article and Find Full Text PDF

Heterozygosity for missense variants and small in-frame deletions in GARS1 has been reported in patients with a range of genetic neuropathies including Charcot-Marie-Tooth disease type 2D (CMT2D), distal hereditary motor neuropathy type V (dHMN-V), and infantile spinal muscular atrophy (iSMA). We identified two unrelated patients who are each heterozygous for a previously unreported missense variant modifying amino-acid position 336 in the catalytic domain of GARS1. One patient was a 20-year-old woman with iSMA, and the second was a 41-year-old man with CMT2D.

View Article and Find Full Text PDF

Congenital microcephaly causes smaller than average head circumference relative to age, sex and ethnicity and is most usually associated with a variety of neurodevelopmental disorders. The underlying etiology is highly heterogeneous and can be either environmental or genetic. Disruption of any one of multiple biological processes, such as those underlying neurogenesis, cell cycle and division, DNA repair or transcription regulation, can result in microcephaly.

View Article and Find Full Text PDF

The Mediator complex subunit 13-like is a part of the large Mediator complex. Recently, a large number of patients were diagnosed with mutations in this gene, which makes it one of the most frequent causes of syndromic intellectual disability. In this work, we report a patient with a novel likely pathogenic variant c.

View Article and Find Full Text PDF

Type 2 congenital microcephaly (MCPH2) is a brain development disorder characterized by primary microcephaly with or without brain malformations. MCPH2 is caused by mutations in the gene. We present three new patients with MCPH2 and compound heterozygous mutations in the gene.

View Article and Find Full Text PDF

Objective: To determine the clinical usefulness of systemic genetic testing in neuropathies without definite etiology.

Methods: We systematically performed genetic testing in all patients with neuropathy who did not have a definite etiology, seen at our neuromuscular clinic between 2017 and 2020. The testing consisted of an inherited neuropathy panel (72-81 genes), which used next-generation sequencing technology.

View Article and Find Full Text PDF

Genes mutated in human neuronal migration disorders encode tubulin proteins and a variety of tubulin-binding and -regulating proteins, but it is very poorly understood how these proteins function together to coordinate migration. Additionally, the way in which regional differences in neocortical migration are controlled is completely unknown. Here we describe a new syndrome with remarkably region-specific effects on neuronal migration in the posterior cortex, reflecting de novo variants in CEP85L.

View Article and Find Full Text PDF

Lissencephaly comprises a spectrum of malformations of cortical development. This spectrum includes agyria, pachygyria, and subcortical band heterotopia; each represents anatomical malformations of brain cortical development caused by neuronal migration defects. The molecular etiologies of neuronal migration anomalies are highly enriched for genes encoding microtubules and microtubule-associated proteins, and this enrichment highlights the critical role for these genes in cortical growth and gyrification.

View Article and Find Full Text PDF

Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4).

View Article and Find Full Text PDF

Primary polyneuropathy in the context of Seip-Berardinelli type 1 seipinopathy, or congenital generalized lipodystrophy type 1 (CGL1) has not been previously reported. We report the case history of a 27 year old female CGL1 patient presenting with an unusual additional development of non-diabetic peripheral neuropathy and learning disabilities in early adolescence. Whole exome sequencing (WES) of the patient genome identified a novel variant, homozygous for a 52 bp intronic deletion in the locus, coding for 1-acylglycerol-3-phosphate O-acyltransferase 2, which is uniquely associated with CGL1 seipinopathies, with no molecular evidence for dual diagnosis.

View Article and Find Full Text PDF

Malformations of cortical development (MCDs) manifest with structural brain anomalies that lead to neurologic sequelae, including epilepsy, cerebral palsy, developmental delay, and intellectual disability. To investigate the underlying genetic architecture of patients with disorders of cerebral cortical development, a cohort of 54 patients demonstrating neuroradiologic signs of MCDs was investigated. Individual genomes were interrogated for single-nucleotide variants (SNV) and copy number variants (CNV) with whole-exome sequencing and chromosomal microarray studies.

View Article and Find Full Text PDF

Background: Given the rarity of most single-gene Mendelian disorders, concerted efforts of data exchange between clinical and scientific communities are critical to optimize molecular diagnosis and novel disease gene discovery.

Methods: We designed and implemented protocols for the study of cases for which a plausible molecular diagnosis was not achieved in a clinical genomics diagnostic laboratory (i.e.

View Article and Find Full Text PDF

Background: Primary immunodeficiency diseases (PIDDs) are clinically and genetically heterogeneous disorders thus far associated with mutations in more than 300 genes. The clinical phenotypes derived from distinct genotypes can overlap. Genetic etiology can be a prognostic indicator of disease severity and can influence treatment decisions.

View Article and Find Full Text PDF

GNB5 encodes the G protein β subunit 5 and is involved in inhibitory G protein signaling. Here, we report mutations in GNB5 that are associated with heart-rate disturbance, eye disease, intellectual disability, gastric problems, hypotonia, and seizures in nine individuals from six families. We observed an association between the nature of the variants and clinical severity; individuals with loss-of-function alleles had more severe symptoms, including substantial developmental delay, speech defects, severe hypotonia, pathological gastro-esophageal reflux, retinal disease, and sinus-node dysfunction, whereas related heterozygotes harboring missense variants presented with a clinically milder phenotype.

View Article and Find Full Text PDF
Article Synopsis
  • Primary immunodeficiency diseases (PIDDs), particularly severe combined immunodeficiency (SCID), are genetic conditions that can lead to life-threatening infections if not diagnosed and treated early.
  • A new next-generation sequencing (NGS) panel was developed to quickly identify genetic mutations associated with SCID and other severe PIDDs, allowing for timely medical interventions.
  • In a study of 20 patients, the NGS approach successfully identified harmful genetic mutations in 14 cases, demonstrating its effectiveness in diagnosing severe immunodeficiency disorders and facilitating early treatment options.
View Article and Find Full Text PDF

Background: Progressive encephalopathy with edema, hypsarrhythmia and optic atrophy (PEHO) syndrome is a distinct neurodevelopmental disorder. Patients without optic nerve atrophy and brain imaging abnormalities but fulfilling other PEHO criteria are often described as a PEHO-like syndrome. The molecular bases of both clinically defined conditions remain unknown in spite of the widespread application of genome analyses in both clinic and research.

View Article and Find Full Text PDF

O1 The metabolomics approach to autism: identification of biomarkers for early detection of autism spectrum disorder A. K. Srivastava, Y.

View Article and Find Full Text PDF

Purpose: Whole-exome sequencing (WES) is increasingly used as a diagnostic tool in medicine, but prior reports focus on predominantly pediatric cohorts with neurologic or developmental disorders. We describe the diagnostic yield and characteristics of WES in adults.

Methods: We performed a retrospective analysis of consecutive WES reports for adults from a diagnostic laboratory.

View Article and Find Full Text PDF