Cancer is a very heterogeneous disease, and biological variability adds a further level of complexity, thus limiting the ability to identify new genes involved in cancer development. Oncogenes whose expression levels control cell aggressiveness are very useful for developing cellular models that permit differential expression screenings in isogenic contexts. HMGA1 protein has this unique property because it is a master regulator in breast cancer cells that control the transition from a nontumorigenic epithelial-like phenotype toward a highly aggressive mesenchymal-like one.
View Article and Find Full Text PDFWe examined factors that influence the decision to join the public health workforce. In this cross-sectional study, we used 2010 secondary data representing 6939 public health workers. Factors influencing the decision to take jobs in public health were significantly associated with specific previous employment settings.
View Article and Find Full Text PDFIn the 1980s, excess infrared emission was discovered around main-sequence stars; subsequent direct-imaging observations revealed orbiting disks of cold dust to be the source. These 'debris disks' were thought to be by-products of planet formation because they often exhibited morphological and brightness asymmetries that may result from gravitational perturbation by planets. This was proved to be true for the β Pictoris system, in which the known planet generates an observable warp in the disk.
View Article and Find Full Text PDFSelective inhibition of α-helix-mediated protein-protein interactions (PPIs) with small organic molecules provides great potential for the discovery of chemical probes and therapeutic agents. Protein Data Bank data mining using the HippDB database indicated that (1) the side chains of hydrophobic projecting hot spots at positions i, i + 3, and i + 7 of an α-helix had few orientations when interacting with the second protein and (2) the hot spot pockets of PPI complexes had different sizes, shapes, and chemical groups when interacting with the same hydrophobic projecting hot spots of α-helix. On the basis of these observations, a small organic molecule, 4'-fluoro-N-phenyl-[1,1'-biphenyl]-3-carboxamide, was designed as a generic scaffold that itself directly mimics the binding mode of the side chains of hydrophobic projecting hot spots at positions i, i + 3, and i + 7 of an α-helix.
View Article and Find Full Text PDFColorectal cancer is a leading cause of cancer-related death. It develops from normal enterocytes, through a benign adenoma stage, into the cancer and finally into the metastatic form. We previously compared the proteomes of normal colorectal enterocytes, cancer and nodal metastasis to a depth of 8100 proteins and found extensive quantitative remodeling between normal and cancer tissues but not cancer and metastasis (Wiśniewski et al.
View Article and Find Full Text PDFEscherichia coli (strain ATCC 25922 in a stationary culture) cells were lysed with SDS and the lysates were processed according MED-FASP protocol. The released peptides were analyzed by LC-MS/MS. Protein content per bacterial cell was calculated on the basis of the DNA content.
View Article and Find Full Text PDFFreshly isolated human hepatocytes are considered the gold standard for in vitro studies of liver functions, including drug transport, metabolism, and toxicity. For accurate predictions of the in vivo outcome, the isolated hepatocytes should reflect the phenotype of their in vivo counterpart, i.e.
View Article and Find Full Text PDFPlasmid-encoded virulence factors are important in the pathogenesis of diseases caused by spore-forming bacteria. Unlike many other bacteria, the most common virulence factors encoded by plasmids in Clostridium and Bacillus species are protein toxins. Clostridium perfringens causes several histotoxic and enterotoxin diseases in both humans and animals and produces a broad range of toxins, including many pore-forming toxins such as C.
View Article and Find Full Text PDFGlycolysis is the core metabolic pathway supplying energy to cells. Whereas the vast majority of studies focus on specific aspects of the process, global analyses characterizing simultaneously all enzymes involved in the process are scarce. Here, we demonstrate that quantitative label- and standard-free proteomics allows accurate determination of titers of metabolic enzymes and enables simultaneous measurements of titers and maximal enzymatic activities (Amax) of all glycolytic enzymes and the gluconeogenic fructose 1,6-bisphosphatase in mouse brain, liver and muscle.
View Article and Find Full Text PDFPhosphoglycerate mutase (PGAM), a conserved, glycolytic enzyme has been found in nucleoli of cancer cells. Here, we present evidence that accumulation of PGAM in the nucleolus is a universal phenomenon concerning not only neoplastically transformed but also non-malignant cells. Nucleolar localization of the enzyme is dependent on the presence of the PGAM2 (muscle) subunit and is regulated by insulin/IGF-1-PI3K signaling pathway as well as drugs influencing ribosomal biogenesis.
View Article and Find Full Text PDFWe describe a proteomic reactor-based homogeneous phase enrichment of cysteine-containing peptides in a filter aided sample preparation (FASP) format. In this approach thiol-reduced proteins are derivatized with thiol-activated polyethylene glycol (TAPEG) before protein cleavage. Consecutive digestion with endoproteinase LysC and trypsin allows isolation of two fractions of nonderivatized peptides.
View Article and Find Full Text PDFJ Allergy Clin Immunol Pract
April 2016
The determination of total protein content is one of the most frequent analytical tasks in biochemistry and molecular biology. Here we evaluate measurements of tryptophan fluorescence (WF) for total protein determination in whole tissue lysates and for peptide quantification in protein digests. We demonstrate that the fluorescence spectrometry of tryptophan offers a simple, sensitive, and direct method for protein and peptide assays.
View Article and Find Full Text PDFBackground: Only limited evidence is available regarding the cytokine repertoire of effector T cells associated with peanut allergy, and how these responses relate to IgE antibodies to peanut components.
Objective: To interrogate T cell effector cytokine populations induced by Ara h 1 and Ara h 2 among peanut allergic (PA) children in the context of IgE and to evaluate their modulation during oral immunotherapy (OIT).
Methods: Peanut-reactive effector T cells were analysed in conjunction with specific IgE profiles in PA children using intracellular staining and multiplex assay.
The conventional model of drug permeability has recently been challenged. An alternative model proposes that transporter-mediated flux is the sole mechanism of cellular drug permeation, instead of existing in parallel with passive transmembrane diffusion. We examined a central assumption of this alternative hypothesis; namely, that transporters can give rise to experimental observations that would typically be explained with passive transmembrane diffusion.
View Article and Find Full Text PDFSlow and fast skeletal muscles are composed of, respectively, mainly oxidative and glycolytic muscle fibers, which are the basic cellular motor units of the motility apparatus. They largely differ in excitability, contraction mechanism, and metabolism. Because of their pivotal role in body motion and homeostasis, the skeletal muscles have been extensively studied using biochemical and molecular biology approaches.
View Article and Find Full Text PDFThe anaerobic pathogen Clostridium perfringens encodes either toxin genes or antibiotic resistance determinants on a unique family of conjugative plasmids that have a novel conjugation region, the tcp locus. Studies of the paradigm conjugative plasmid from C. perfringens, the 47-kb tetracycline resistance plasmid pCW3, have identified several tcp-encoded proteins that are involved in conjugative transfer and form part of the transfer apparatus.
View Article and Find Full Text PDFTotal protein approach (TPA) is a proteomic method that allows calculation of concentrations of individual proteins and groups of functionally related proteins in any protein mixture without spike-in standards. Using the two-step digestion-filter-aided sample preparation method and LC-MS/MS analysis, we generated comprehensive quantitative datasets of mouse intestinal mucosa, liver, red muscle fibers, brain, and of human plasma, erythrocytes, and tumor cells lines. We show that the TPA-based quantitative data reflect well-defined and specific physiological functions of different organs and cells, for example nutrient absorption and transport in intestine, amino acid catabolism and bile secretion in liver, and contraction of muscle fibers.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2014
Internalins comprise a class of Listeria monocytogenes proteins responsible for activation of signalling pathways leading to phagocytic uptake of the bacterium by the host cell. In this paper, a possible role of Lmo0171-a new member of the internalin family was investigated. Disruption of the lmo0171 gene resulted in important cell morphology alterations along with a decrease in the ability to invade three eukaryotic cell lines, that is Int407, Hep-2 and HeLa and diminished adhesion efficiency to int407, thereby suggesting bifunctionality of the newly characterised Lmo0171 internalin.
View Article and Find Full Text PDFThe aberrant formation of the β-catenin/B-cell lymphoma 9 (BCL9) protein-protein complex is the driving force for many diseases, including cancer. Crystallographic analyses demonstrate that the surface area in β-catenin for interacting with BCL9 is overlapped with that for the β-catenin/E-cadherin interaction. In this study, a robust AlphaScreen selectivity assay was developed to quantify inhibitor potency for the β-catenin/BCL9 interaction and selectivity for β-catenin/BCL9 over β-catenin/E-cadherin interactions.
View Article and Find Full Text PDF