Publications by authors named "Wisnewsky C"

In mammalian myocardium, relaxation is mainly triggered by the reuptake of calcium from the cytosol to the lumen of the sarcoplasmic reticulum (SR) through the cardiac isoform of the sarco(endo)plasmic reticulum calcium ATPase, SERCA2a. Relaxation abnormalities related to deficient SR Ca(2+)-uptake have been identified in human heart failure and in animal models of cardiac hypertrophy and failure. These alterations have been associated with a reduction in SERCA2a activity and in steady-state SERCA2a protein and mRNA levels.

View Article and Find Full Text PDF

In striated muscle, chronic increases in workload result in changes in myosin phenotype. The aim of this study was to determine whether such changes occur in the diaphragm of patients with severe chronic obstructive pulmonary disease, a situation characterized by a chronic increase in respiratory load and lung volume. Diaphragm biopsies were obtained from 22 patients who underwent thoracic surgery.

View Article and Find Full Text PDF

Pressure overload induces cardiac growth in the rat, which implies the hypertrophy of cardiac muscle cells and proliferation of nonmuscle cells. The cardiac cell loss observed in parallel has generally been attributed to necrosis. Using an in situ assay, we demonstrated a phase of apoptosis or programmed cell death during the first 7 d after pressure overload with a peak at day 4 while cardiac growth continued for over 30 d.

View Article and Find Full Text PDF

We have analyzed the transition between isoforms of the glycolytic enzyme enolase (2-phospho-D-glycerate hydrolyase; EC 4.2.1.

View Article and Find Full Text PDF

By using a strategy based on nucleotide sequence homology, we have cloned an intronless DNA encoding a new putative member of G protein-coupled receptors. The deduced amino acid sequence of the rat OL1 receptor, together with its expression at high levels in a small subset of cells in the olfactory neuroepithelium indicate that OL1 is related to the recently discovered olfactory multigene family. PCR and in situ hybridization analyses showed the OL1 transcripts to be not only expressed in the olfactory epithelium, but also in the heart.

View Article and Find Full Text PDF

Familial hypertrophic cardiomyopathy (FHC) is a clinically and genetically heterogeneous disease. The first identified disease gene, located on chromosome 14q11-q12, encodes the beta-myosin heavy chain. We have performed linkage analysis of two French FHC pedigrees, 720 and 730, with two microsatellite markers located in the beta-myosin heavy chain gene (MYO I and MYO II) and with four highly informative markers, recently mapped to chromosome 14q11-q12.

View Article and Find Full Text PDF

Familial hypertrophic cardiomyopathy (FHC) is a cardiac disorder transmitted as an autosomal dominant trait. FHC has been shown to be genetically heterogeneous with less than 50% of published pedigrees being associated with mutations in the beta myosin heavy chain (beta-MHC) gene on chromosome 14q11-q12. A second locus has recently been reported on chromosome 1.

View Article and Find Full Text PDF

Myocardial response to a hemodynamic overload involves changes in the expression of isogenes encoding myosin heavy chain (MHC) and actin: beta-MHC/alpha-MHC and skeletal/cardiac alpha-actin mRNA isoform ratios are increased. It is not known whether these changes are due to increased accumulations of the two neosynthesized transcripts, beta-MHC and skeletal alpha-actin, or whether the mRNA isoforms normally present, alpha-MHC and cardiac alpha-actin, are concomitantly decreased. To answer these questions, using dot-blot hybridizations, primer extension, and exonuclease VII mapping assays, we have analyzed the content of sarcomeric MHC and actin mRNAs in the poly(A+) RNA in left ventricles of 23-24-day-old rats 18 and 24 hours after a pressure overload induced by stenosis of the thoracic aorta.

View Article and Find Full Text PDF

In the heart, mRNA accumulations for sarcomeric actins and myosin heavy chains (MHC) are subject to diverse regulatorial processes. To study cardiac contractile protein transcriptional regulations, an in vitro transcription system using nonenzymatically isolated rat cardiac nuclei was characterized. Transcription was shown to be rapid and continuous during the first 20 min of incubation and 5.

View Article and Find Full Text PDF

Sarcomeric actin genes, alpha-cardiac and alpha-skeletal, are coexpressed in neonatal rodent hearts and are regulated in response to hormonal and hemodynamic stimuli; however, their precise developmental pattern of expression has not been determined, and it is unknown whether they are coexpressed during senescence. We have, therefore, investigated the accumulation of sarcomeric actin transcripts in rat heart during fetal and postnatal development and with senescence by two different techniques: primer extension analysis with an oligonucleotide common to both sarcomeric actins and RNA hybridization with specific cardiac alpha-actin cRNA probes. We found that at 17-19 days in utero both isogenes are coexpressed and alpha-skeletal actin mRNAs represent 28.

View Article and Find Full Text PDF

Expression of myosin heavy chain (MHC) and actin multigene families changes in mammals during cardiac growth and hypertrophy, but whether or not there is a common regulatory pathway is unclear. To address this question, we have looked at the alpha- and beta-MHC, and at the alpha-skeletal and alpha-cardiac actin (alpha-skel act and alpha-card act) isomRNA transitions during development and senescence, both in rat and human hearts. Since the precise amounts of each isoactin mRNA were not precisely known in the above situations, we first analyzed the time- course of accumulations of the two sarcomeric transcripts by primer extension assays, which allow an umambiguous quantification of the ratios of the two actin transcripts.

View Article and Find Full Text PDF

We studied papillary muscle mechanics and energetics, myosin phenotype, and ATPase activities in left ventricles from rats bearing a growth hormone (GH)--secreting tumor. 18 wk after tumor induction, animals exhibited a dramatic increase in body weight (+101% vs. controls) but no change in the ventricular weight/body weight ratio.

View Article and Find Full Text PDF

Skeletal alpha-actin gene products are coexpressed with cardiac alpha-actins in cardiac tissue of adult humans, cows, and pigs; in prenatal rats; and during hypertrophy due either to increased hemodynamic load or the administration of alpha-adrenergic agonists. Because there is preferential synthesis of the beta-myosin heavy chain in each case, it has been suggested that the synthesis of skeletal alpha-actin in cardiac tissue is linked to that of beta-myosin heavy chain. To test this hypothesis, thyroid hormone, which causes cardiac hypertrophy with preferential synthesis of alpha-myosin heavy chain, was administered to normal and hypophysectomized rats.

View Article and Find Full Text PDF

A creatine analogue, beta-guanidinopropionic acid (GPA), was fed to 12 young rats for several weeks. Another 12 animals were kept in the same conditions and age matched. Six pairs of animals were used to measure some energetic and mechanical parameters of the isovolumic perfused heart and to measure the accumulation of the phosphorylated form of GPA (GPAP) by 31P-nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

The reduction in Ca2+ concentration during diastole and relaxation occurs differently in normal hearts and in hypertrophied hearts secondary to pressure overload. We have studied some possible molecular mechanisms underlying these differences by examining the function of the sarcoplasmic reticulum and the expression of the gene encoding its Ca2(+)-ATPase in rat hearts with mild and severe compensatory hypertrophy induced by abdominal aortic constriction. Twelve sham-operated rats and 31 operated rats were studied 1 month after surgery.

View Article and Find Full Text PDF

A decrease in the myocardial level of the mRNA encoding the Ca2(+)-ATPase of the sarcoplasmic reticulum (SR) has been recently reported during experimental cardiac hypertrophy and failure. To determine if such a deficit occurs in human end-stage heart failure, we compared the SR Ca2(+)-ATPase mRNA levels in left (LV) and right ventricular (RV) specimens from 13 patients undergoing cardiac transplantation (6 idiopathic dilated cardiomyopathies; 4 coronary artery diseases with myocardial infarctions; 3 diverse etiologies) with control heart samples using a rat cardiac SR Ca2(+)-ATPase cDNA probe. We observed a marked decrease in the mRNA for the Ca2(+)-ATPase relative to both the 18S ribosomal RNA and the myosin heavy chain mRNA in LV specimens of patients with heart failure compared to controls (-48%, P less than 0.

View Article and Find Full Text PDF

Activation of atrial natriuretic factor (ANF) gene expression has been reported in the rat ventricle in several models of hemodynamic overload, including hypertension. However, nothing is known about the potential trigger(s) and the time course of this activation during the development of hypertension. We measured aortic blood pressure, left ventricular hypertrophy (LVH), and left ventricular ANF mRNA concentration (LV ANF mRNA) in a first group of rats (study A) killed at 5 and 18 h and 2, 4, 6, 9, 15, and 30 days after suprarenal coarctation of the abdominal aorta.

View Article and Find Full Text PDF

Cardiac hypertrophy secondary to chronic hemodynamic overload is associated with an increase in the ventricular concentration of the messenger ribonucleic acid (mRNA) coding for the atrial natriuretic factor (ANF). We have compared, in male Wistar rats (10 week old, 200-220 g), using dot blot hybridization and a specific oligonucleotide probe, the left ventricular concentration of ANF mRNA (LV ANF mRNA) in 4 models of chronic hemodynamic overload inducing various patterns of left ventricular hypertrophy (LVH): a model of volume overload, the aortocaval fistula (ACF, n = 15); a model of pressure overload, coarctation of the abdominal aorta (CoA, n = 13) and 2 models of mixed overload, aortic regurgitation (AR, n = 7) and myocardial infarction (INF, n = 18). A month after surgery, LVH was 49 p.

View Article and Find Full Text PDF

We have investigated the level of expression of the atrial natriuretic factor (ANF) gene in the human heart during ontogenic development by determining the concentrations of ANF messenger ribonucleic acid (ANF mRNA), of immunoreactive ANF (IR ANF) and of receptor reactive ANF (RR ANF), in myocardial samples of the various heart chambers. We found the level was high and almost identical in the left and right ventricles in utero. It gradually decreased during ontogenic development to reach the low adult levels, with a more rapid decrease in the right than in the left ventricle after birth.

View Article and Find Full Text PDF

In our approach to dynamic cardiomyoplasty, which consists of wrapping a skeletal muscle around the heart and stimulating the former in synchrony with heart contractions to augment ventricular contractility, we have transferred a latissimus dorsi muscle flap to the heart by way of a partial resection of the second rib and subsequently suturing the muscle flap around the ventricles. The muscle flap is stimulated by a Cardio-Myostimulator burst-pulse generator (Medtronic SP 1005) connected to intramuscular electrodes. In preclinical animal research, the latissimus dorsi muscle flap was shown to maintain adequate contractile force and to increase its fatigue resistance by gradual conversion of glycolytic-fatigue-sensitive-to-oxidative-fatigue-resistant muscular fibers (100%).

View Article and Find Full Text PDF

We have investigated some characteristics of the sarcoplasmic reticulum (Ca2+ + Mg2+)-dependent ATPase (Ca2+-ATPase) mRNA from smooth muscle using specific cDNA probes isolated from a rat heart cDNA library. RNA blot analysis has shown that the Ca2+-ATPase mRNA expressed in smooth muscle is identical in size to the cardiac mRNA but differs from that of fast skeletal muscle. S1 nuclease mapping has moreover shown that the cardiac and smooth muscle isoforms possess different 3'-end sequences.

View Article and Find Full Text PDF

Aortic insufficiency was induced in rats. Left ventricular papillary muscle function was studied after 5, 12, and 40 wk and compared with the papillary muscles from sham-operated animals. The maximum unloaded velocity of shortening, Vmax, was decreased in the rats with aortic insufficiency relative to controls by 15, 20, and 34% at 5, 12, and 40 wk, respectively.

View Article and Find Full Text PDF

Rats were given amiodarone (50 mg X kg-1 X day-1, orally) for 4 weeks and the distribution of ventricular isomyosins, a sensitive index of the effects of thyroid hormones on cardiac tissue, was analyzed. Amiodarone treatment induced a marked increase in both T4 and rT3 and tended to decrease T3 serum levels. At the pharmacologically active dosage we used, the drug induced a moderate redistribution of ventricular isomyosins in favour of V, at the expense of V1.

View Article and Find Full Text PDF

The atria produce several peptides that have natriuretic and vasoactive properties, collectively called atrial natriuretic factor. All these peptides share a single messenger ribonucleic acid, the amount of which greatly increases in the rat left ventricle when the latter is submitted to chronic volume overload. Using the molecular hybridization technique and a desoxyribonucleic acid probe complementary to the atrial natriuretic factor messenger ribonucleic acid, we now report that a very important increase in the amount of this messenger ribonucleic acid is also observed in rat ventricle at at the compensatory stage of a pressure overload induced cardiac hypertrophy.

View Article and Find Full Text PDF

Two myosin heavy chains (MHCs), alpha and beta, which exhibit different levels of ATPase activity related to the different velocities of muscle shortening, are differentially expressed in rat cardiac ventricles, depending on the developmental stage and the thyroid status of the animals. In contrast, no changes have been reported concerning the expression of atrial MHCs in the same physiological and pathological conditions. We have now performed studies with sensitive techniques to test the hypothesis that the expression of alpha- and beta-MHCs can also be modulated in the rat atria, although at a low level.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiondcm4pqsa4uegp75dk2fhknc88v109jf7): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once