Maternal stress (MS) has long-term effects on fetal brain development and consequently increases the risk of neuropsychiatric diseases in the offspring, however, the mechanism that links between early life stress and subsequent neuropsychiatric diseases is still not clear. It is well known that both neuroinflammation and autophagy dysfunction contributes to the pathology of psychiatric disorders. We hypothesized that MS might alter autophagy function and activate the neuroimmune response in the pup's brain.
View Article and Find Full Text PDFCholinergic basal forebrain (cBF) neurons are particularly vulnerable to degeneration following trauma and in neurodegenerative conditions. One reason for this is their characteristic expression of the p75 neurotrophin receptor (p75 ), which is up-regulated and mediates neuronal death in a range of neurological and neurodegenerative conditions, including dementia, stroke and ischaemia. The signalling pathway by which p75 signals cell death is incompletely characterised, but typically involves activation by neurotrophic ligands and signalling through c-Jun kinase, resulting in caspase activation via mitochondrial apoptotic signalling pathways.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common type of senile dementia. A number of factors have been proposed regarding pathology of AD, such as presence of β-amyloid, and cholinergic and oxidative stress. SAK3 (ethyl 8'-methyl-2',5-dioxo-2-piperidin-1-ylspiro[cyclopentene-3,3'-imidazo[1,2-a]pyridine]-1-carboxylate) reduces β-amyloid deposition and improves cognitive functions in amyloid precursor protein knock-in mice.
View Article and Find Full Text PDFOxidative stress is implicated in pathogenesis of neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. The study demonstrates diarylpropionitrile (DPN), an antioxidant selective agonist of estrogen receptor β, protected human neuroblastoma SH-SY5Y cells against HO-induced toxicity by attenuating production of reactive oxygen species, apoptosis, autophagy, NF-κB activation, MAPK p38, JNK and ERK 1/2 signaling pathways, and β-site amyloid precursor protein cleaving enzyme level, but, interestingly, stimulating Akt pathway. These findings indicate the important potential of DPN to ameliorate oxidative stress-associated damage in neurodegenerative disorders.
View Article and Find Full Text PDFAlzheimer's disease, a progressive neurodegenerative disease, affects learning and memory resulting from cholinergic dysfunction. Scopolamine has been employed to induce Alzheimer's disease-like pathology and through alteration of cholinergic system. -benzylcinnamide (PT-3), purified from , has been shown to exhibit neuroprotective properties against amyloid-β-induced neuronal toxicity in rat cortical primary cell culture and to improve spatial learning and memory of aged rats through alleviating oxidative stress.
View Article and Find Full Text PDFNeurodegenerative disorders are characterized by chronic and progressive loss of neurons in structure and function related to aging, such as Alzheimer's disease, the latter characterized by the degeneration of cholinergic neurons in basal forebrain connected to the cerebral cortex and hippocampus. Amniotic fluid mesenchymal stem cells (AF-MSCs) have been proposed as one of the candidates for stem cell therapy of nervous system disorders. This study demonstrates that incubation of AF-MSCs, obtained from 16 to 20 week pregnant women, with 10ng/ml bone morphogenetic protein (BMP)-9 for 48h in conditioned medium resulted in transdifferentiation to cholinergic neuronal-like cells.
View Article and Find Full Text PDFIn order to understand and find therapeutic strategies for neurological disorders, disease models that recapitulate the connectivity and circuitry of patients' brain are needed. Owing to many limitations of animal disease models, in vitro neuronal models using patient-derived stem cells are currently being developed. However, prior to employing neurons as a model in a dish, they need to be evaluated for their electrophysiological properties, including both passive and active membrane properties, dynamics of neurotransmitter release, and capacity to undergo synaptic plasticity.
View Article and Find Full Text PDFBrain aging has been associated with oxidative stress leading to inflammation and apoptosis. The protective effects and underlying mechanisms of N-benzylcinnamide (PT-3), purified from Piper submultinerve, on brains of 90-week-old Wistar rats were investigated following daily intraperitoneal injection with 1.5 mg of PT-3/kg of body weight for 15 days.
View Article and Find Full Text PDFAlzheimer's disease is a major cause of dementia in the elderly that involves a β-amyloid peptide (Aβ)-induced cascade of an increase in oxidative damage and inflammation. The present study demonstrated the neuroprotective effects of diarylpropionitrile (DPN), a non-steroidal estrogen receptor β selective ligand, against 10 μM Aβ1-42-induced oxidative stress and inflammation in primary rat cortical cell culture. Pre-treatment with 1-100 nM DPN significantly decreased neuronal cell death by increasing cell viability through a significant attenuation in the reactive oxygen species level, downregulation of pro-apoptotic activated caspase-3 and Bax, and upregulation of anti-apoptotic Bcl-2, thereby mitigating apoptotic morphological alterations.
View Article and Find Full Text PDFThe initial impact of spinal cord injury (SCI) often results in inflammation leading to irreversible damage with consequent loss of locomotor function. Minimal recovery is achieved once permanent damage has occurred. Using a mouse model of SCI we observed a transitory increase followed by a rapid decline in gene expression and protein levels of nuclear factor erythroid 2-related factor 2 (Nrf2), a master regulator of cellular anti-oxidative genes.
View Article and Find Full Text PDFThe pathogenesis of Alzheimer's disease involves an amyloid β-peptide (Aβ)-induced cascade of elevated oxidative damage and inflammation. The present study investigates the protective effects and the underlying mechanisms of N-benzylcinnamide (PT-3), purified from Piper submultinerve. Against Aβ-induced oxidative stress and inflammation in rat primary cortical cell cultures.
View Article and Find Full Text PDFEnhanced oxidative stress and inflammation play important roles in the pathogenesis of Alzheimer's disease (AD). Amyloid β-peptide (Aβ), a major component of amyloid plaques, is considered to have a causal role in the development and progress of AD by being the initiator of a pathological cascade leading to oxidative stress. The present study investigated the effect of N-trans-feruloyltyramine (NTF) purified from Polyalthia suberosa, an alkaloid shown to protect against oxidative stress and cell death.
View Article and Find Full Text PDFAlzheimer's disease (AD) is characterized by the depositions of amyloid-β (Aβ) proteins, resulting in a reduction of choline acetyltransferase (ChAT) activity of AD brain in the early stages of the disease. Several growth factors, including brain-derived neurotrophic factor (BDNF), insulin-like growth factor (IGF)-1 and glial cell-derived neurotrophic factor (GDNF) are known to protect neuronal cell death in several neurodegenerative both in vitro and in vivo models. In this study, septal neurons were prepared from septal nucleus of embryonic (day 16-17) rat brain and treated with monomeric, oligomeric or fibrillar Aβ(1-42) peptide.
View Article and Find Full Text PDFSeveral pieces of evidence suggest that academic examinations fulfill the classical requirement of a psychological stressor. Academic examinations represent a stressful challenge to many students, but studies on examination-dependent corticosteroid response, a sensitive physiological indicator of a stress response, are inconsistent. In addition, several studies showed that music can decrease cortisol and adrenocorticotropic hormone (ACTH) levels, and other studies have found that music also may enhance a variety of cognitive functions, such as attention, learning, communication and memory.
View Article and Find Full Text PDFAlzheimer's disease is characterized by the accumulation of neurotoxic amyloidogenic peptide Abeta, degeneration of the cholinergic innervation to the hippocampus (the septohippocampal pathway), and progressive impairment of cognitive function, particularly memory. Abeta is a ligand for the p75 neurotrophin receptor (p75(NTR)), which is best known for mediating neuronal death and has been consistently linked to the pathology of Alzheimer's disease. Here we examined whether p75(NTR) is required for Abeta-mediated effects.
View Article and Find Full Text PDFThe generation of amyloid-beta peptide (Abeta) and its accumulation in amyloid plaques are generally recognized as key characteristics of Alzheimer's disease. A number of reports have indicated that Abeta can regulate the proliferation of neural precursor cells and adult neurogenesis, suggesting that this may underpin the cognitive decline and compromised olfaction also associated with the condition. Here we report that Abeta(1-42) treatment both in vitro and in vivo, as well as endogenous generation of Abeta in C100 and APP/PS1 transgenic models of Alzheimer's disease, stimulate neurogenesis of young adult subventricular zone precursors.
View Article and Find Full Text PDFBeta-amyloid (Abeta) peptides may cause malfunction and death of neurons in Alzheimer's disease. We investigated the effect of Abeta on key transporters of amino acid neurotransmission in cells cultured from rat cerebral cortex. The cultures were treated with Abeta(25-35) at 3 and 10 microM for 12 and 24 h followed by quantitative analysis of immunofluorescence intensity.
View Article and Find Full Text PDFIt was previously observed that IL-1beta interferes with BDNF-induced TrkB-mediated signal transduction and protection of cortical neurons from apoptosis evoked by deprivation from trophic support [Tong L., Balazs R., Soiampornkul R.
View Article and Find Full Text PDFThe expression of IL-1 is elevated in the CNS in diverse neurodegenerative disorders, including Alzheimer's disease. The hypothesis was tested that IL-1 beta renders neurons vulnerable to degeneration by interfering with BDNF-induced neuroprotection. In trophic support-deprived neurons, IL-1 beta compromised the PI3-K/Akt pathway-mediated protection by BDNF and suppressed Akt activation.
View Article and Find Full Text PDFSoutheast Asian J Trop Med Public Health
July 2006
The tumor suppressor gene locus is known to be partly responsible for the tumorigenesis of sporadic gliomas, but the genetic events that drive the neoplastic process of this tumor remain largely unknown. We correlated the results of loss of heterozygosity (LOH) analysis on chromosomes 10 and 17 and a point mutation analysis of a tumor suppressor gene, p53, in 21 patients with astrocytomas at different stages. LOH was determined in tumor and leukocyte DNAs of primary human central nervous system tumors.
View Article and Find Full Text PDF