High-throughput genetic screens have become essential tools for studying a wide variety of biological processes. Here we experimentally compare systems based on clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) or its transcriptionally repressive variant, CRISPR-interference (CRISPRi), with a traditional short hairpin RNA (shRNA)-based system for performing lethality screens. We find that the CRISPR technology performed best, with low noise, minimal off-target effects and consistent activity across reagents.
View Article and Find Full Text PDFRecurrent inactivating mutations in components of SWI/SNF chromatin-remodeling complexes have been identified across cancer types, supporting their roles as tumor suppressors in modulating oncogenic signaling pathways. We report here that SMARCE1 loss induces EGFR expression and confers resistance to MET and ALK inhibitors in non-small cell lung cancers (NSCLCs). We found that SMARCE1 binds to regulatory regions of the EGFR locus and suppresses EGFR transcription in part through regulating expression of Polycomb Repressive Complex component CBX2.
View Article and Find Full Text PDFKRAS is the most frequently mutated oncogene in human cancer, yet no therapies are available to treat KRAS mutant cancers. We used two independent reverse genetic approaches to identify components of the RAS-signaling pathways required for growth of KRAS mutant tumors. Small interfering RNA (siRNA) screening of 37 KRAS mutant colorectal cancer cell lines showed that RAF1 suppression was synthetic lethal with MEK inhibition.
View Article and Find Full Text PDFThere are no effective therapies for the ~30% of human malignancies with mutant RAS oncogenes. Using a kinome-centered synthetic lethality screen, we find that suppression of the ERBB3 receptor tyrosine kinase sensitizes KRAS mutant lung and colon cancer cells to MEK inhibitors. We show that MEK inhibition results in MYC-dependent transcriptional upregulation of ERBB3, which is responsible for intrinsic drug resistance.
View Article and Find Full Text PDFTreatment of BRAF(V600E) mutant melanoma by small molecule drugs that target the BRAF or MEK kinases can be effective, but resistance develops invariably. In contrast, colon cancers that harbour the same BRAF(V600E) mutation are intrinsically resistant to BRAF inhibitors, due to feedback activation of the epidermal growth factor receptor (EGFR). Here we show that 6 out of 16 melanoma tumours analysed acquired EGFR expression after the development of resistance to BRAF or MEK inhibitors.
View Article and Find Full Text PDFRetinoids play key roles in development, differentiation, and homeostasis through regulation of specific target genes by the retinoic acid receptor/retinoid X receptor (RAR/RXR) nuclear receptor complex. Corepressors and coactivators contribute to its transcriptional control by creating the appropriate chromatin environment, but the precise composition of these nuclear receptor complexes remains to be elucidated. Using an RNA interference-based genetic screen in mouse F9 cells, we identified the transcriptional corepressor CTBP2 (C-terminal binding protein 2) as a coactivator critically required for retinoic acid (RA)-induced transcription.
View Article and Find Full Text PDFInhibitors of the ALK and EGF receptor tyrosine kinases provoke dramatic but short-lived responses in lung cancers harboring EML4-ALK translocations or activating mutations of EGFR, respectively. We used a large-scale RNAi screen to identify MED12, a component of the transcriptional MEDIATOR complex that is mutated in cancers, as a determinant of response to ALK and EGFR inhibitors. MED12 is in part cytoplasmic where it negatively regulates TGF-βR2 through physical interaction.
View Article and Find Full Text PDF