Publications by authors named "Winzell M"

Fibroblast growth factor 21 (FGF21) is a promising therapeutic agent for treatment of type 2 diabetes (T2D) and non-alcoholic steatohepatitis (NASH). We show that therapeutic levels of FGF21 were achieved following subcutaneous (s.c.

View Article and Find Full Text PDF

Aims/hypothesis: Inflammatory signals and increased prostaglandin synthesis play a role during the development of diabetes. The prostaglandin D (PGD) receptor, GPR44/DP2, is highly expressed in human islets and activation of the pathway results in impaired insulin secretion. The role of GPR44 activation on islet function and survival rate during chronic hyperglycaemic conditions is not known.

View Article and Find Full Text PDF

Background: The G-protein-coupled receptor 44 (GPR44) is a beta cell-restricted target that may serve as a marker for beta cell mass (BCM) given the development of a suitable PET ligand.

Methods: The binding characteristics of the selected candidate, AZ12204657, at human GPR44 were determined using in vitro ligand binding assays. AZ12204657 was radiolabeled using C- or H-labeled methyl iodide ([C/H]CHI) in one step, and the conversion of [C/H]CHI to the radiolabeled product [C/H]AZ12204657 was quantitative.

View Article and Find Full Text PDF

Neurturin (NRTN) provides trophic support to neurons and is considered a therapeutic agent for neurodegenerative diseases, such as Parkinson's disease. It binds to its co-receptor GFRa2, and the resulting NRTN-GFRa2 complex activates the transmembrane receptors rearranged during transfection (RET) or the neural cell adhesion molecule (NCAM). We report the crystal structure of NRTN, alone and in complex with GFRa2.

View Article and Find Full Text PDF

The mechanism behind the glucose lowering effect occurring after specific activation of GPR120 is not completely understood. In this study, a potent and selective GPR120 agonist was developed and its pharmacological properties were compared with the previously described GPR120 agonist Metabolex-36. Effects of both compounds on signaling pathways and GLP-1 secretion were investigated in vitro.

View Article and Find Full Text PDF

Neurturin (NRTN), a member of the glial-derived neurotrophic factor family, was identified from an embryonic chicken pancreatic cDNA library in a screen for secreted factors. In this study, we assessed the potential antidiabetic activities of NRTN relative to liraglutide, a glucagon-like peptide 1 receptor agonist, in Zucker diabetic fatty (ZDF) rats. Subcutaneous administration of NRTN to 8-week-old male ZDF rats prevented the development of hyperglycemia and improved metabolic parameters similar to liraglutide.

View Article and Find Full Text PDF

Islet transplantation has become a viable clinical treatment, but is still compromised by long-term graft failure. Exendin-4, a glucagon-like peptide 1 receptor agonist, has in clinical studies been shown to improve insulin secretion in islet transplanted patients. However, little is known about the effect of exendin-4 on other metabolic parameters.

View Article and Find Full Text PDF

Aims/hypothesis: Studies have shown that dipeptidyl peptidase-4 (DPP4) inhibitors stimulate insulin secretion and increase beta cell mass in rodents. However, in these models hyperglycaemia has been induced early on in life and the treatment periods have been short. To explore the long-term effects of DPP4 inhibition on insulin secretion and beta cell mass, we have generated a high-fat diet (HFD)-induced-obesity model in mice of advanced age (10 months old).

View Article and Find Full Text PDF

Changes in adipose tissue distribution and ectopic fat storage in, liver and skeletal muscle tissue impact whole body insulin sensitivity in both humans and experimental animals. Numerous mouse models of obesity, insulin resistance, and diabetes exist; however, current methods to assess mouse phenotypes commonly involve direct harvesting of the tissues of interest, precluding the possibility of repeated measurements in the same animal. In this study, we demonstrate that whole body 3-D imaging of body fat composition can be used to analyze distribution as well as redistribution of fat after intervention by repeated assessment of intrahepatocellular lipids (IHCL), intra-abdominal, subcutaneous, and total adipose tissue (IAT, SAT, and TAT) and brown adipose tissue (BAT).

View Article and Find Full Text PDF

Glucokinase (GK) plays a key role in maintaining glucose homeostasis by promoting insulin secretion from pancreatic beta cells and increasing hepatic glucose uptake. Here we investigate the effects of acute and chronic GK activation on glucose tolerance and insulin secretion in mice with diet-induced insulin resistance. In the acute study, a small molecule GK activator (GKA71) was administered to mice fed a high-fat diet for 8 weeks.

View Article and Find Full Text PDF

The peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor superfamily. Several reports have shown that PPARdelta is involved in lipid metabolism, increasing fat oxidation and depleting lipid accumulation. Whether PPARdelta is involved in the regulation of glucose metabolism is not completely understood.

View Article and Find Full Text PDF

Context: The insulin response to meal ingestion is more rapid in the morning than in the afternoon. Whether this is explained by a corresponding variation in the incretin hormones is not known.

Objective: Our objective was to assess islet and incretin hormones after meal ingestion in the morning vs.

View Article and Find Full Text PDF

Background/objectives: Dietary addition of either conjugated linoleic acid (CLA) or n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) has been shown to alter adiposity and circulating lipids, risk markers of cardiovascular diseases. However, CLA may decrease insulin sensitivity, an effect that may be reversed by n-3 LC-PUFA. Thus, the potential of CLA plus n-3 LC-PUFA to affect insulin secretion and sensitivity in non-diabetic young and old, lean and obese subjects was tested.

View Article and Find Full Text PDF

Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate islet function after carbohydrate ingestion. Whether incretin hormones are of importance for islet function after ingestion of noncarbohydrate macronutrients is not known. This study therefore examined integrated incretin and islet hormone responses to ingestion of pure fat (oleic acid; 0.

View Article and Find Full Text PDF

To study whether the incretin effect is involved in adaptively increased insulin secretion in insulin resistance, glucose was infused at a variable rate to match glucose levels after oral glucose (25 mg) in normal anesthetized C57BL/6J female mice or in mice rendered insulin resistant by 8 weeks of high-fat feeding. Insulin response was markedly higher after oral than i.v.

View Article and Find Full Text PDF

This study aimed to determine the effect of supplementation with conjugated linoleic acids (CLAs) plus n-3 long-chain polyunsaturated fatty acids (n-3 LC-PUFAs) on body composition, adiposity, and hormone levels in young and older, lean and obese men. Young (31.4+/-3.

View Article and Find Full Text PDF

Glucagon-like peptide 1 (GLP-1) augments glucose-stimulated insulin secretion (GSIS) through cAMP-induced activation of protein kinase A (PKA), and stimulates beta-cell proliferation and reduces beta-cell apoptosis in rodent islets. This study explored islet GSIS, PKA expression, and markers of apoptosis (caspase 3/7 activity) and proliferation (PKBalpha and pancreatic and duodenal homeobox gene 1, Pdx-1) after 2 weeks of treatment with the GLP-1 receptor agonist exendin-4 (2 nmol/kg once daily) in female mice with high-fat diet-induced insulin resistance (HFD; 58% fat by energy). Islets were isolated 20 h after the last exendin-4 injection, when effects of circulating exendin-4 had vanished.

View Article and Find Full Text PDF

Islet function is regulated by a number of different signals. A main signal is generated by glucose, which stimulates insulin secretion and inhibits glucagon secretion. The glucose effects are modulated by many factors, including hormones, neurotransmitters and nutrients.

View Article and Find Full Text PDF

Vasoactive intestinal polypeptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are two closely related neuropeptides that are expressed in islets and in islet parasympathetic nerves. Both peptides bind to their common G-protein-coupled receptors, VPAC1 and VPAC2, and PACAP, in addition to the specific receptor PAC1, all three of which are expressed in islets. VIP and PACAP stimulate insulin secretion in a glucose-dependent manner and they both also stimulate glucagon secretion.

View Article and Find Full Text PDF

Inhibition of dipeptidyl peptidase-4 (DPP-4) is currently explored as a novel therapy of type 2 diabetes. The strategy has been shown to improve glycemia in most, but not all, rodent forms of glucose intolerance. In this study, we explored the effects of DPP-4 inhibition in mice with beta-cell overexpression of human islet amyloid polypeptide (IAPP).

View Article and Find Full Text PDF

Aims/hypothesis: Increased glucagon secretion predicts deterioration of glucose tolerance, and high glucagon levels contribute to hyperglycaemia in type 2 diabetes. Inhibition of glucagon action may therefore be a potential novel target to reduce hyperglycaemia. Here, we investigated whether chronic treatment with a glucagon receptor antagonist (GRA) improves islet dysfunction in female mice on a high-fat diet (HFD).

View Article and Find Full Text PDF

The free fatty acid receptor, GPR40, has been coupled with insulin secretion via its expression in pancreatic beta-cells. However, the role of GPR40 in the release of glucagon has not been studied and previous attempts to identify the receptor in alpha-cells have been unfruitful. Using double-staining for glucagon and GPR40 expression, we demonstrate that the two are expressed in the same cells in the periphery of mouse islets.

View Article and Find Full Text PDF

The high fat-fed mouse is an experimental model for studies of islet dysfunction as a mechanism for glucose intolerance and for evaluation of therapeutic targets. This model is, however, dynamic with a temporal and dietary fat content-dependent impact on islet function and glucose tolerance, the details of which are unknown. This study therefore examined the time course of changes in the insulin response to intravenous glucose (1 g/kg) in relation to glucose tolerance in female mice after 1, 3, 8, or 16 weeks of feeding with diets containing 11% fat (normal diet [ND]), 30% fat (medium-fat diet [MFD]), or 58% fat (high-fat diet [HFD]; by energy).

View Article and Find Full Text PDF

In previous studies, glucagon receptor knockout mice (Gcgr(-/-)) display reduced blood glucose and increased glucose tolerance, with hyperglucagonemia and increased levels of glucagon-like peptide (GLP)-1. However, the role of glucagon receptor signaling for the regulation of islet function and insulin sensitivity is unknown. We therefore explored beta-cell function and insulin sensitivity in Gcgr(-/-) and wild-type mice.

View Article and Find Full Text PDF

Monounsaturated fatty acids, such as oleic acid (OA), and certain milk proteins, especially whey protein (WP), have insulinotropic effects and can reduce postprandial glycemia. This effect may involve the incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). To explore this, we examined the release and inactivation of GIP and GLP-1 after administration of glucose with or without OA or WP through gastric gavage in anesthetized C57BL/6J mice.

View Article and Find Full Text PDF