Processing of newly synthesized polypeptides is essential for protein homeostasis and cell viability. In bacteria and eukaryotic organelles, all proteins are synthesized with formylmethionine at their N-terminus. As the nascent peptide emerges from the ribosome during translation, the formyl group is removed by peptide deformylase (PDF), an enzyme that belongs to the family of ribosome-associated protein biogenesis factors (RPBs).
View Article and Find Full Text PDFNascent polypeptides emerging from the ribosome during translation are rapidly scanned and processed by ribosome-associated protein biogenesis factors (RPBs). RPBs cleave the N-terminal formyl and methionine groups, assist cotranslational protein folding, and sort the proteins according to their cellular destination. Ribosomes translating inner-membrane proteins are recognized and targeted to the translocon with the help of the signal recognition particle, SRP, and SRP receptor, FtsY.
View Article and Find Full Text PDFSynthesis of bacterial proteins on the ribosome starts with a formylated methionine. Removal of the N-terminal formyl group is essential and is carried out by peptide deformylase (PDF). Deformylation occurs co-translationally, shortly after the nascent-chain emerges from the ribosomal exit tunnel, and is necessary to allow for further N-terminal processing.
View Article and Find Full Text PDFDuring synthesis of membrane proteins, transmembrane segments (TMs) of nascent proteins emerging from the ribosome are inserted into the central pore of the translocon (SecYEG in bacteria) and access the phospholipid bilayer through the open lateral gate formed of two helices of SecY. Here we use single-molecule fluorescence resonance energy transfer to monitor lateral-gate fluctuations in SecYEG embedded in nanodiscs containing native membrane phospholipids. We find the lateral gate to be highly dynamic, sampling the whole range of conformations between open and closed even in the absence of ligands, and we suggest a statistical model-free approach to evaluate the ensemble dynamics.
View Article and Find Full Text PDFIntegral membrane proteins insert into the bacterial inner membrane co-translationally via the translocon. Transmembrane (TM) segments of nascent proteins adopt their native topological arrangement with the N-terminus of the first TM (TM1) oriented to the outside (type I) or the inside (type II) of the cell. Here, we study TM1 topogenesis during ongoing translation in a bacterial in vitro system, applying real-time FRET and protease protection assays.
View Article and Find Full Text PDFElongation factor G (EF-G) is a translational GTPase that acts at several stages of protein synthesis. Its canonical function is to catalyze tRNA movement during translation elongation, but it also acts at the last step of translation to promote ribosome recycling. Moreover, EF-G has additional functions, such as helping the ribosome to maintain the mRNA reading frame or to slide over non-coding stretches of the mRNA.
View Article and Find Full Text PDFA concise 7-step total synthesis of (±)-fumimycin in 11.6 % overall yield is reported. An acid-catalyzed intramolecular aza-Friedel-Crafts cyclization was developed to construct the benzofuranone skeleton of the natural product bearing an α,α-disubstituted amino acid moiety in a single step.
View Article and Find Full Text PDFMembrane proteins in bacteria are cotranslationally inserted into the plasma membrane through the SecYEG translocon. Ribosomes exposing the signal-anchor sequence (SAS) of a membrane protein are targeted to the translocon by the signal recognition particle (SRP) pathway. SRP scans translating ribosomes and forms high-affinity targeting complexes with those exposing a SAS.
View Article and Find Full Text PDFThe bacterial signal recognition particle (SRP) is part of the machinery that targets ribosomes synthesizing membrane proteins to membrane-embedded translocons co-translationally. Recognition of nascent membrane proteins occurs by virtue of a hydrophobic signal-anchor sequence (SAS) contained in the nascent chain, usually at the N terminus. Here we use fluorescence-based stopped-flow to monitor SRP-ribosome interactions with actively translating ribosomes while an SRP substrate is synthesized and emerges from the peptide exit tunnel.
View Article and Find Full Text PDFBacterial proteins are synthesized with an N-formylated amino-terminal methionine, and N-formylated peptides elicit innate-immunity responses against bacterial infections. However, the source of these formylated peptides is not clear, as most bacterial proteins are co-translationally deformylated by peptide deformylase. Here we develop a deformylation assay with translating ribosomes as substrates, to show that the binding of the signal recognition particle (SRP) to signal sequences in nascent proteins on the ribosome prevents deformylation, whereas deformylation of nascent proteins without signal sequence is not affected.
View Article and Find Full Text PDFIn each round of translation elongation, tRNAs and mRNA move within the ribosome by one codon at a time. tRNA-mRNA translocation is promoted by elongation factor G (EF-G) at the cost of GTP hydrolysis. The key questions for understanding translocation are how and when the tRNAs move and how EF-G coordinates motions of the ribosomal subunits with tRNA movement.
View Article and Find Full Text PDFProteins are inserted into the bacterial plasma membrane cotranslationally after translating ribosomes are targeted to the translocon in the membrane via the signal recognition particle (SRP) pathway. The targeting pathway involves an interaction between SRP and the SRP receptor, FtsY. Here we focus on the role of FtsY and its interaction with the translocon in controlling targeting.
View Article and Find Full Text PDFIntegral membrane proteins in bacteria are co-translationally targeted to the SecYEG translocon for membrane insertion via the signal recognition particle (SRP) pathway. The SRP receptor FtsY and its N-terminal A domain, which is lacking in any structural model of FtsY, were studied using NMR and fluorescence spectroscopy. The A domain is mainly disordered and highly flexible; it binds to lipids via its N terminus and the C-terminal membrane targeting sequence.
View Article and Find Full Text PDFThe elongation phase of protein synthesis defines the overall speed and fidelity of protein synthesis and affects protein folding and targeting. The mechanisms of reactions taking place during translation elongation remain important questions in understanding ribosome function. The ribosome-guided by signals in the mRNA-can recode the genetic information, resulting in alternative protein products.
View Article and Find Full Text PDFDuring translation elongation, ribosome translocation along an mRNA entails rotations of the ribosomal subunits, swiveling motions of the small subunit (SSU) head and stepwise movements of the tRNAs together with the mRNA. Here, we reconstructed the choreography of the collective motions of the Escherichia coli ribosome during translocation promoted by elongation factor EF-G, by recording the fluorescence signatures of nine different reporters placed on both ribosomal subunits, tRNA and mRNA. We captured an early forward swiveling of the SSU head taking place while the SSU body rotates in the opposite, clockwise direction.
View Article and Find Full Text PDFCotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear.
View Article and Find Full Text PDFThe coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known.
View Article and Find Full Text PDFProteins are co-translationally inserted into the bacterial plasma membrane via the SecYEG translocon by lateral release of hydrophobic transmembrane segments into the phospholipid bilayer. The trigger for lateral opening of the translocon is not known. Here we monitor lateral opening by photo-induced electron transfer (PET) between two fluorophores attached to the two SecY helices at the rim of the gate.
View Article and Find Full Text PDFThe translocation of tRNAs through the ribosome proceeds through numerous small steps in which tRNAs gradually shift their positions on the small and large ribosomal subunits. The most urgent questions are: (i) whether these intermediates are important; (ii) how the ribosomal translocase, the GTPase elongation factor G (EF-G), promotes directed movement; and (iii) how the energy of GTP hydrolysis is coupled to movement. In the light of recent advances in biophysical and structural studies, we argue that intermediate states of translocation are snapshots of dynamic fluctuations that guide the movement.
View Article and Find Full Text PDFNascent proteins emerging from translating ribosomes in bacteria are screened by a number of ribosome-associated protein biogenesis factors, among them the chaperone trigger factor (TF), the signal recognition particle (SRP) that targets ribosomes synthesizing membrane proteins to the membrane and the modifying enzymes, peptide deformylase (PDF) and methionine aminopeptidase (MAP). Here, we examine the interplay between these factors both kinetically and at equilibrium. TF rapidly scans the ribosomes until it is stabilized on ribosomes presenting TF-specific nascent chains.
View Article and Find Full Text PDFElongation factor G (EF-G) promotes the movement of two tRNAs and the mRNA through the ribosome in each cycle of peptide elongation. During translocation, the tRNAs transiently occupy intermediate positions on both small (30S) and large (50S) ribosomal subunits. How EF-G and GTP hydrolysis control these movements is still unclear.
View Article and Find Full Text PDFProtein synthesis in bacteria is terminated by release factors 1 or 2 (RF1/2), which, on recognition of a stop codon in the decoding site on the ribosome, promote the hydrolytic release of the polypeptide from the transfer RNA (tRNA). Subsequently, the dissociation of RF1/2 is accelerated by RF3, a guanosine triphosphatase (GTPase) that hydrolyzes GTP during the process. Here we show that--in contrast to a previous report--RF3 binds GTP and guanosine diphosphate (GDP) with comparable affinities.
View Article and Find Full Text PDFTranslation (Austin)
January 2016
Elongation factor G (EF-G) is a GTPase that catalyzes tRNA and mRNA translocation during the elongation cycle of protein synthesis. The GTP-bound state of the factor on the ribosome has been studied mainly with non-hydrolyzable analogs of GTP, which led to controversial conclusions about the role of GTP hydrolysis in translocation. Here we describe a mutant of EF-G in which the catalytic His91 is replaced with Ala.
View Article and Find Full Text PDFNat Struct Mol Biol
December 2012
Ribosomes synthesizing inner membrane proteins in Escherichia coli are targeted to the membrane by the signal recognition particle (SRP) pathway. By rapid kinetic analysis we show that after initial binding to the ribosome, SRP undergoes dynamic fluctuations in search of additional interactions. Non-translating ribosomes, or ribosomes synthesizing non-membrane proteins, do not provide these contacts, allowing SRPs to dissociate rapidly.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2012
Resistance to the antibiotic fusidic acid (FA) in the human pathogen Staphylococcus aureus usually results from expression of FusB-type proteins (FusB or FusC). These proteins bind to elongation factor G (EF-G), the target of FA, and rescue translation from FA-mediated inhibition by an unknown mechanism. Here we show that the FusB family are two-domain metalloproteins, the C-terminal domain of which contains a four-cysteine zinc finger with a unique structural fold.
View Article and Find Full Text PDF