Macroendocytosis comprising phagocytosis and macropinocytosis is an actin-driven process regulated by small GTPases that depend on the dynamic reorganization of the membrane that protrudes and internalizes extracellular material by cup-shaped structures. To effectively capture, enwrap, and internalize their targets, these cups are arranged into a peripheral ring or ruffle of protruding actin sheets emerging from an actin-rich, nonprotrusive zone at its base. Despite extensive knowledge of the mechanism driving actin assembly of the branched network at the protrusive cup edge, which is initiated by the actin-related protein (Arp) 2/3 complex downstream of Rac signaling, our understanding of actin assembly in the base is still incomplete.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
December 2022
Background: Human pluripotent stem cell-derived muscle models show great potential for translational research. Here, we describe developmentally inspired methods for the derivation of skeletal muscle cells and their utility in skeletal muscle tissue engineering with the aim to model skeletal muscle regeneration and dystrophy in vitro.
Methods: Key steps include the directed differentiation of human pluripotent stem cells to embryonic muscle progenitors followed by primary and secondary foetal myogenesis into three-dimensional muscle.
Background: Congenital ISG15 deficiency is a rare autoinflammatory disorder that is driven by chronically elevated systemic interferon levels and predominantly affects central nervous system and skin.
Methods And Results: We have developed induced pluripotent stem cell-derived macrophages and endothelial cells as a model to study the cellular phenotype of ISG15 deficiency and identify novel treatments. ISG15 macrophages exhibited the expected hyperinflammatory responses, but normal phagocytic function.
Although the immunomodulatory and cytoprotective properties of itaconate have been studied extensively, it is not known whether its naturally occurring isomers mesaconate and citraconate have similar properties. Here, we show that itaconate is partially converted to mesaconate intracellularly and that mesaconate accumulation in macrophage activation depends on prior itaconate synthesis. When added to human cells in supraphysiological concentrations, all three isomers reduce lactate levels, whereas itaconate is the strongest succinate dehydrogenase (SDH) inhibitor.
View Article and Find Full Text PDFExcessive inflammation is a major cause of morbidity and mortality in many viral infections including influenza. Therefore, there is a need for therapeutic interventions that dampen and redirect inflammatory responses and, ideally, exert antiviral effects. Itaconate is an immunomodulatory metabolite which also reprograms cell metabolism and inflammatory responses when applied exogenously.
View Article and Find Full Text PDFItaconate is derived from the tricarboxylic acid (TCA) cycle intermediate -aconitate and links innate immunity and metabolism. Its synthesis is altered in inflammation-related disorders and it therefore has potential as clinical biomarker. Mesaconate and citraconate are naturally occurring isomers of itaconate that have been linked to metabolic disorders, but their functional relationships with itaconate are unknown.
View Article and Find Full Text PDFThe Indonesian island of Sulawesi is a globally significant biodiversity hotspot with substantial undescribed biota, particularly blood-borne parasites of endemic wildlife. Documenting the blood parasites of Sulawesi's murine rodents is the first fundamental step towards the discovery of pathogens likely to be of concern for the health and conservation of Sulawesi's endemic murines. We screened liver samples from 441 specimens belonging to 20 different species of murine rodents from 2 mountain ranges on Sulawesi, using polymerase chin reaction (PCR) primers targeting the conserved 18S rDNA region across the protozoan class Kinetoplastea.
View Article and Find Full Text PDFEndocytic processes are facilitated by both curvature-generating BAR-domain proteins and the coordinated polymerization of actin filaments. Under physiological conditions, the N-BAR protein Bin1 has been shown to sense and curve membranes in a variety of cellular processes. Recent studies have identified Bin1 as a risk factor for Alzheimer's disease, although its possible pathological function in neurodegeneration is currently unknown.
View Article and Find Full Text PDFEna/VASP proteins act as actin polymerases that drive the processive elongation of filament barbed ends in membrane protrusions or at the surface of bacterial pathogens. Based on previous analyses of fast and slow elongating VASP proteins by in vitro total internal reflection fluorescence microscopy (TIRFM) and kinetic and thermodynamic measurements, we established a kinetic model of Ena/VASP-mediated actin filament elongation. At steady state, it entails that tetrameric VASP uses one of its arms to processively track growing filament barbed ends while three G-actin-binding sites (GABs) on other arms are available to recruit and deliver monomers to the filament tip, suggesting that VASP operates as a single tetramer in solution or when clustered on a surface, albeit processivity and resistance toward capping protein (CP) differ dramatically between both conditions.
View Article and Find Full Text PDFMigration frequently involves Rac-mediated protrusion of lamellipodia, formed by Arp2/3 complex-dependent branching thought to be crucial for force generation and stability of these networks. The formins FMNL2 and FMNL3 are Cdc42 effectors targeting to the lamellipodium tip and shown here to nucleate and elongate actin filaments with complementary activities in vitro. In migrating B16-F1 melanoma cells, both formins contribute to the velocity of lamellipodium protrusion.
View Article and Find Full Text PDFPhagocytosis and macropinocytosis are Ras-regulated and actin-driven processes that depend on the dynamic rearrangements of the plasma membrane that protrudes and internalizes extracellular material by cup-shaped structures. However, the regulatory mechanisms underlying actin assembly in large-scale endocytosis remain elusive. Here, we show that the Diaphanous-related formin G (ForG) from the professional phagocyte Dictyostelium discoideum localizes to endocytic cups.
View Article and Find Full Text PDFIn response to chemotactic signals, motile cells develop a single protruding front to persistently migrate in direction of the chemotactic gradient. The highly dynamic reorganization of the actin cytoskeleton is an essential part during this process and requires the precise interplay of various actin filament assembly factors and actin-binding proteins (ABPs). Although many ABPs have been implicated in cell migration, as yet only a few of them have been well characterized concerning their specific functions during actin network assembly and disassembly.
View Article and Find Full Text PDFWiskott-Aldrich syndrome proteins (WASPs) are nucleation-promoting factors (NPF) that differentially control the Arp2/3 complex. In Drosophila, three different family members, SCAR (also known as WAVE), WASP and WASH (also known as CG13176), have been analyzed so far. Here, we characterized WHAMY, the fourth Drosophila WASP family member.
View Article and Find Full Text PDFCell migration is driven by the establishment of disparity between the cortical properties of the softer front and the more rigid rear allowing front extension and actomyosin-based rear contraction. However, how the cortical actin meshwork in the rear is generated remains elusive. Here we identify the mDia1-like formin A (ForA) from Dictyostelium discoideum that generates a subset of filaments as the basis of a resilient cortical actin sheath in the rear.
View Article and Find Full Text PDFActin-filament disassembly is indispensable for replenishing the pool of polymerizable actin and allows continuous dynamic remodelling of the actin cytoskeleton. A new study now reveals that ADF/cofilin preferentially dismantles branched networks and provides new insights into the collaborative work of ADF/cofilin and Aip1 on filament disassembly at the molecular level.
View Article and Find Full Text PDFThe cyclic pyrimidine nucleotide cCMP has been suggested to serve as second messenger. However, phosphodiesterases studied so far do not hydrolyze cCMP. Therefore, we searched for alternative cCMP inactivation mechanisms.
View Article and Find Full Text PDFDiaphanous-related formins (DRFs) act as downstream effectors of Rho family GTPases and drive the formation and elongation of linear actin filaments in various cellular processes. Here we analyzed the DRF dDia1 from Dictyostelium cells. The biochemical characterization of recombinant dDia1-FH1FH2 by bulk polymerization assays and single filament TIRF microscopy revealed that dDia1 is a rather weak nucleator.
View Article and Find Full Text PDFFilopodia explore the environment, sensing soluble and mechanical cues during directional motility and tissue morphogenesis. How filopodia are initiated and spatially restricted to specific sites on the plasma membrane is still unclear. Here, we show that the membrane deforming and curvature sensing IRSp53 (Insulin Receptor Substrate of 53 kDa) protein slows down actin filament barbed end growth.
View Article and Find Full Text PDFCoordinated assembly and disassembly of actin into filaments and higher order structures such as stress fibers and lamellipodia are fundamental for cell migration and adhesion. However, the precise spatiotemporal regulation of F-actin structures is not completely understood. SWAP-70, a phosphatidylinositol 3,4,5-trisphosphate-interacting, F-actin-binding protein, participates in actin rearrangements through yet unknown mechanisms.
View Article and Find Full Text PDFDiaphanous-related formins (DRFs) drive the nucleation and elongation of linear actin filaments downstream of Rho GTPase signalling pathways. Dictyostelium formin C (ForC) resembles a DRF, except that it lacks a genuine formin homology domain 1 (FH1), raising the questions whether or not ForC can nucleate and elongate actin filaments. We found that a recombinant ForC-FH2 fragment does not nucleate actin polymerization, but moderately decreases the rate of spontaneous actin assembly and disassembly, although the barbed-end elongation rate in the presence of the formin was not markedly changed.
View Article and Find Full Text PDFLamellipodia are sheet-like protrusions formed during migration or phagocytosis and comprise a network of actin filaments. Filament formation in this network is initiated by nucleation/branching through the actin-related protein 2/3 (Arp2/3) complex downstream of its activator, suppressor of cAMP receptor/WASP-family verprolin homologous (Scar/WAVE), but the relative relevance of Arp2/3-mediated branching versus actin filament elongation is unknown. Here we use instantaneous interference with Arp2/3 complex function in live fibroblasts with established lamellipodia.
View Article and Find Full Text PDFDuring Drosophila embryogenesis, the first epithelium with defined cortical compartments is established during cellularization. Actin polymerization is required for the separation of lateral and basal domains as well as suppression of tubular extensions in the basal domain. The actin nucleator mediating this function is unknown.
View Article and Find Full Text PDFCell migration entails protrusion of lamellipodia, densely packed networks of actin filaments at the cell front. Filaments are generated by nucleation, likely mediated by Arp2/3 complex and its activator Scar/WAVE. It is unclear whether formins contribute to lamellipodial actin filament nucleation or serve as elongators of filaments nucleated by Arp2/3 complex.
View Article and Find Full Text PDF