The demand for rice varieties with lower amylose content (AC) is increasing in Southeast Asia, primarily due to their desirable texture and cooking qualities. This study presents the development of whole-grain rice lines with low to intermediate glycemic index (GI) and reduced AC. We selected six rice lines for in vivo GI assessment based on their starch properties.
View Article and Find Full Text PDFIntroduction: Whole-grain pigmented rice (WCP) provides many nutritional benefits compared to non-pigmented varieties. The textural quality of cooked whole-grain rice, particularly its hardness, is crucial for consumers' preferences.
Materials And Methods: We investigated the impact of multiple-grain nutrient components on textural attributes through Pearson Correlation and Path Coefficient Analyses (PCA).
Callus induction (CI) is a critical trait for transforming desirable genes in plants. A genome-wide association study (GWAS) analysis was conducted on the rice germplasms of 110 rice accessions, in which three tissue culture media, B5, MS, and N6, were used for the CI of those rice panels' mature seeds. Seven quantitative trait loci (QTLs) on rice chromosomes 2, 6, 7, and 11 affected the CI percentage in the three media.
View Article and Find Full Text PDFConsumers' general preference for white rice over whole grain rice stems from the hardness and low palatability of cooked whole grain rice; however, strong links have been found between consuming a large amount of white rice, leading a sedentary lifestyle, and acquiring type 2 diabetes. This led us to formulate a new breeding goal to improve the softness and palatability of whole grain rice while promoting its nutritional value. In this study, the association between dietary fibre profiles (using an enzymatic method combined with high-performance liquid chromatography) and textural properties of whole grain rice (using a texture analyser) was observed.
View Article and Find Full Text PDFPlant trichomes generally act as a physical defense against herbivore attacks and are present in a variety of plants, including rice plants. This research examined the physical and chemical defenses of rice plants against the brown planthopper (BPH), (Stål) (Hemiptera: Delphacidae). A total of 10 rice varieties were used in this study.
View Article and Find Full Text PDFThe rice sesquiterpene synthase II gene (, LOC_Os04g27430), which is involved in the antixenosis defense mechanism of rice against brown planthopper (BPH) infestation, was identified in the BPH-resistant rice variety Rathu Heenati (RH). In contrast, the gene was not functional in the BPH-susceptible rice variety KDML105 (KD). Single-nucleotide polymorphisms (SNPs) in the promoter region and in exon 5 of the gene and a seven amino acid deletion in the deduced protein sequence are suggested as factors that negatively regulate the function of the gene.
View Article and Find Full Text PDFIntroduction: Brown planthopper (BPH) is a phloem feeding insect that causes annual disease outbreaks, called hopper burn in many countries throughout Asia, resulting in severe damage to rice production. Currently, mechanistic understanding of BPH resistance in rice plant is limited, which has caused slow progression on developing effective rice varieties as well as effective farming practices against BPH infestation.
Objective: To reveal rice metabolic responses during 8 days of BPH attack, this study examined polar metabolome extracts of BPH-susceptible (KD) and its BPH-resistant isogenic line (IL308) rice leaves.
Background: The development of rice varieties with broad-spectrum resistance to insect pests is the most promising approach for controlling a fast evolving insect pest such as the brown planthopper (BPH). To cope with rapid evolution, discovering new sources of broad-spectrum resistance genes is the ultimate goal.
Results: We used a forward genetics approach to identify BPH resistance genes in rice (Oryza sativa L.
The world-renowned Thai Hom Mali Rice has been the most important aromatic rice originating in Thailand. The aromatic variety was collected from Chachoengsao, a central province, and after pure-line selection, it was officially named as Khao Dawk Mali 105, (KDML105). Because of its superb fragrance and cooking quality, KDML105 has been a model variety for studying genes controlling grain quality and aroma.
View Article and Find Full Text PDF