Histopathology, the standard method to assess BM in hematologic malignancies such as myeloproliferative neoplasms (MPNs), suffers from notable limitations in both research and clinical settings. BM biopsies in patients fail to detect disease heterogeneity, may yield a nondiagnostic sample, and cannot be repeated frequently in clinical oncology. Endpoint histopathology precludes monitoring disease progression and response to therapy in the same mouse over time, missing likely variations among mice.
View Article and Find Full Text PDFERG is a transcription factor encoded on chromosome 21q22.2 with important roles in hematopoiesis and oncogenesis of prostate cancer. ERG amplification has been identified as one of the most common recurrent events in acute myeloid leukemia with complex karyotype (AML-CK).
View Article and Find Full Text PDFAdvances in digital pathology have allowed a number of opportunities such as decision support using artificial intelligence (AI). The application of AI to digital pathology data shows promise as an aid for pathologists in the diagnosis of haematological disorders. AI-based applications have embraced benign haematology, diagnosing leukaemia and lymphoma, as well as ancillary testing modalities including flow cytometry.
View Article and Find Full Text PDFThe diagnosis of pure erythroid leukemia (PEL) can be challenging. Prompt identification of CD45+, CD34-, CD71+, CD117+, and E-cadherin+ erythroblasts is important. The differential diagnosis is broad and includes megaloblastic anemia.
View Article and Find Full Text PDFWe report the diagnostic challenges and the clinical course of a patient with an extraordinary presentation of B-lymphoblastic leukemia (B-ALL) with eosinophilia. We identified a novel gene fusion as a chimeric RNA transcript using the Archer platform. This gene fusion from the same patient was recently identified by Peterson et al.
View Article and Find Full Text PDFBlood cell formation is classically thought to occur through a hierarchical differentiation process, although recent studies have shown that lineage commitment may occur earlier in hematopoietic stem and progenitor cells (HSPCs). The relevance to human blood diseases and the underlying regulation of these refined models remain poorly understood. By studying a genetic blood disorder, Diamond-Blackfan anemia (DBA), where the majority of mutations affect ribosomal proteins and the erythroid lineage is selectively perturbed, we are able to gain mechanistic insight into how lineage commitment is programmed normally and disrupted in disease.
View Article and Find Full Text PDFObjectives: Myeloid proliferative disorders associated with Down syndrome (MPD-DS), including transient abnormal myelopoiesis and myeloid leukemia associated with Down syndrome (DS), harbor mutations of GATA1, a transcription factor essential for erythroid and megakaryocytic development. These mutations result in a N-terminally truncated GATA1 (GATA1s) and prohibit the production of the full-length GATA1 (GATA1f). Here, we demonstrate the utility of immunohistochemical GATA1f reactivity in diagnosing MPD-DS.
View Article and Find Full Text PDFGain-of-function Notch mutations are recurrent in mature small B cell lymphomas such as mantle cell lymphoma (MCL) and chronic lymphocytic leukemia (CLL), but the Notch target genes that contribute to B cell oncogenesis are largely unknown. We performed integrative analysis of Notch-regulated transcripts, genomic binding of Notch transcription complexes, and genome conformation data to identify direct Notch target genes in MCL cell lines. This BÂ cell Notch regulome is largely controlled through Notch-bound distal enhancers and includes genes involved in B cell receptor and cytokine signaling and the oncogene MYC, which sustains proliferation of Notch-dependent MCL cell lines via a Notch-regulated lineage-restricted enhancer complex.
View Article and Find Full Text PDFObjectives: GATA binding factor 1 (GATA1) is a transcription factor essential for erythromegakaryocytic differentiation. Given its function in lineage specification, we sought to evaluate the immunohistochemical profile of GATA1 in normal marrow and acute leukemia and assess the use of GATA1 as a specific erythromegakaryocytic immunohistochemical marker.
Methods: Immunohistochemical studies for GATA1 expression were performed on bone marrow biopsy specimens to define its role in the evaluation of acute leukemia and other hematologic disorders.
Cutaneous paraneoplastic syndromes comprise a broad spectrum of cutaneous reactions to an underlying malignancy. These dermatoses are not the result of metastatic spread to the skin, but rather a reaction to the presence of malignancy. Cutaneous paraneoplastic syndromes often precede the identification of a malignancy.
View Article and Find Full Text PDFSignal regulatory protein α (SIRPα), a highly glycosylated type-1 transmembrane protein, is composed of three immunoglobulin-like extracellular loops as well as a cytoplasmic tail containing three classical tyrosine-based inhibitory motifs. Previous reports indicate that SIRPα binds to humoral pattern recognition molecules in the collectin family, namely surfactant proteins D and A (Sp-D and Sp-A, respectively), which are heavily expressed in the lung and constitute one of the first lines of innate immune defense against pathogens. However, little is known about molecular details of the structural interaction of Sp-D with SIRPs.
View Article and Find Full Text PDFThe migration of polymorphonuclear leukocytes (PMNs) across the intestinal epithelium is a histopathological hallmark of many mucosal inflammatory diseases including inflammatory bowel disease. The terminal transmigration step is the detachment of PMNs from the apical surface of the epithelium and their subsequent release into the intestinal lumen. The current study sought to identify epithelial proteins involved in the regulation of PMN migration across intestinal epithelium at the stage at which PMNs reach the apical epithelial surface.
View Article and Find Full Text PDFInteraction of SIRPα with its ligand, CD47, regulates leukocyte functions, including transmigration, phagocytosis, oxidative burst, and cytokine secretion. Recent progress has provided significant insights into the structural details of the distal IgV domain (D1) of SIRPα. However, the structural roles of proximal IgC domains (D2 and D3) have been largely unstudied.
View Article and Find Full Text PDFInflammatory cytokines have been proposed to regulate epithelial homeostasis during intestinal inflammation. We report here that interferon-gamma (IFN-gamma) regulates the crucial homeostatic functions of cell proliferation and apoptosis through serine-threonine protein kinase AKT-beta-catenin and Wingless-Int (Wnt)-beta-catenin signaling pathways. Short-term exposure of intestinal epithelial cells to IFN-gamma resulted in activation of beta-catenin through AKT, followed by induction of the secreted Wnt inhibitor Dkk1.
View Article and Find Full Text PDFNeutrophil (PMN) infiltration into tissues is a hallmark of acute inflammation and is crucial for the rapid removal of microbial pathogens. Previous studies have shown that PMN transmigration is regulated by the cell surface protein CD47. However this phenomenon in the context of microbial invasion and subsequent TLR signaling is poorly understood.
View Article and Find Full Text PDFBackground: Many mucosal inflammatory conditions are associated with alterations in epithelial intercellular junctions and barrier function; however, little is known about the role of intercellular junctions in inflammatory diseases of the upper airways. In this study, we examined nasal polyps for altered intercellular junctions and protein expression.
Methods: Biopsy specimens of nasal polyps and normal tissue were obtained intraoperatively from 11 patients and 6 controls.
Junctional adhesion molecule-A (JAM-A) is a transmembrane tight junction protein that has been shown to regulate barrier function and cell migration through incompletely understood mechanisms. We have previously demonstrated that JAM-A regulates cell migration by dimerization of the membrane-distal immunoglobulin-like loop and a C-terminal postsynaptic density 95/disc-large/zona occludens (PDZ) binding motif. Disruption of dimerization resulted in decreased epithelial cell migration secondary to diminished levels of beta1 integrin and active Rap1.
View Article and Find Full Text PDFNeutrophil (PMN) infiltration and associated release of serine proteases contribute to epithelial injury during active phases of mucosal disorders such as inflammatory bowel disease. Previous studies have demonstrated that PMN contact with basolateral surfaces of intestinal epithelial cells in the presence of a chemoattractant results in disruption of barrier function even without transmigration. Similarly, serine protease-mediated activation of epithelial protease-activated receptors (PARs) has been shown to increase permeability.
View Article and Find Full Text PDFDuring mucosal inflammation, a complex array of proinflammatory and protective mechanisms regulates inflammation and severity of injury. Secretion of anti-inflammatory mediators is a mechanism that is critical in controlling inflammatory responses and promoting epithelial restitution and barrier recovery. AnxA1 is a potent anti-inflammatory protein that has been implicated to play a critical immune regulatory role in models of inflammation.
View Article and Find Full Text PDFLeukocyte transendothelial migration (TEM) is a critical event during inflammation. CD47 has been implicated in myeloid cell migration across endothelium and epithelium. CD47 binds to signal regulatory protein (SIRP), SIRPalpha and SIRPgamma.
View Article and Find Full Text PDFRecent evidence has linked intestinal permeability to mucosal inflammation, but molecular studies are lacking. Candidate regulatory molecules localized within the tight junction (TJ) include Junctional Adhesion Molecule (JAM-A), which has been implicated in the regulation of barrier function and leukocyte migration. Thus, we analyzed the intestinal mucosa of JAM-A-deficient (JAM-A(-/-)) mice for evidence of enhanced permeability and inflammation.
View Article and Find Full Text PDFSignal regulatory proteins (SIRP-alpha, -beta, and -gamma) are important regulators of several innate immune functions that include leukocyte migration. Membrane distal (D1) domains of SIRPalpha and SIRPgamma, but not SIRPbeta, mediate binding to a cellular ligand termed CD47. Because the extracellular domains of all SIRPs are highly homologous, we hypothesized that some of the 16 residues unique to SIRPalpha.
View Article and Find Full Text PDFPolymorphonuclear leukocyte (PMN) transmigration into tissues is a highly regulated process and plays a central role in host defense. In inflammatory human diseases such as ulcerative colitis and Crohn's disease, the infiltration of intestinal mucosa by large numbers of PMNs contributes to epithelial pathophysiology. The sequence of events that fine-tune PMN migration across epithelial cells is not well-understood.
View Article and Find Full Text PDF