J Med Imaging (Bellingham)
November 2023
Purpose: We describe a method to identify repeatable liver computed tomography (CT) radiomic features, suitable for detection of steatosis, in nonhuman primates. Criteria used for feature selection exclude nonrepeatable features and may be useful to improve the performance and robustness of radiomics-based predictive models.
Approach: Six crab-eating macaques were equally assigned to two experimental groups, fed regular chow or an atherogenic diet.
Detection of the physiological response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is challenging in the absence of overt clinical signs but remains necessary to understand a full subclinical disease spectrum. In this study, our objective was to use radiomics (from computed tomography images) and blood biomarkers to predict SARS-CoV-2 infection in a nonhuman primate model (NHP) with inapparent clinical disease. To accomplish this aim, we built machine-learning models to predict SARS-CoV-2 infection in a NHP model of subclinical disease using baseline-normalized radiomic and blood sample analyses data from SARS-CoV-2-exposed and control (mock-exposed) crab-eating macaques.
View Article and Find Full Text PDFThe mass production of the graphics processing unit and the coronavirus disease 2019 (COVID-19) pandemic have provided the means and the motivation, respectively, for rapid developments in artificial intelligence (AI) and medical imaging techniques. This has led to new opportunities to improve patient care but also new challenges that must be overcome before these techniques are put into practice. In particular, early AI models reported high performances but failed to perform as well on new data.
View Article and Find Full Text PDFMarburg virus (MARV) is a highly virulent zoonotic filovirid that causes Marburg virus disease (MVD) in humans. The pathogenesis of MVD remains poorly understood, partially due to the low number of cases that can be studied, the absence of state-of-the-art medical equipment in areas where cases are reported, and limitations on the number of animals that can be safely used in experimental studies under maximum containment animal biosafety level 4 conditions. Medical imaging modalities, such as whole-body computed tomography (CT), may help to describe disease progression , potentially replacing ethically contentious and logistically challenging serial euthanasia studies.
View Article and Find Full Text PDFRationale And Objectives: Animal modeling of infectious diseases such as coronavirus disease 2019 (COVID-19) is important for exploration of natural history, understanding of pathogenesis, and evaluation of countermeasures. Preclinical studies enable rigorous control of experimental conditions as well as pre-exposure baseline and longitudinal measurements, including medical imaging, that are often unavailable in the clinical research setting. Computerized tomography (CT) imaging provides important diagnostic, prognostic, and disease characterization to clinicians and clinical researchers.
View Article and Find Full Text PDFAggregated α-synuclein, a major constituent of Lewy bodies plays a crucial role in the pathogenesis of α-synucleinopathies (SPs) such as Parkinson's disease (PD). PD is affected by the innate and adaptive arms of the immune system, and recently both active and passive immunotherapies targeted against α-synuclein are being trialed as potential novel treatment strategies. Specifically, dendritic cell-based vaccines have shown to be an effective treatment for SPs in animal models.
View Article and Find Full Text PDFPurpose: We propose a method to identify sensitive and reliable whole-lung radiomic features from computed tomography (CT) images in a nonhuman primate model of coronavirus disease 2019 (COVID-19). Criteria used for feature selection in this method may improve the performance and robustness of predictive models.
Approach: Fourteen crab-eating macaques were assigned to two experimental groups and exposed to either severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or a mock inoculum.
Advanced diffusion imaging which accounts for complex tissue properties, such as crossing fibers and extracellular fluid, may detect longitudinal changes in widespread pathology in atypical Parkinsonian syndromes. We implemented fixel-based analysis, Neurite Orientation and Density Imaging (NODDI), and free-water imaging in Parkinson's disease (PD), multiple system atrophy (MSAp), progressive supranuclear palsy (PSP), and controls longitudinally over one year. Further, we used these three advanced diffusion imaging techniques to investigate longitudinal progression-related effects in key white matter tracts and gray matter regions in PD and two common atypical Parkinsonian disorders.
View Article and Find Full Text PDFBackground And Objectives: The goal of this work was to determine the relationship between diffusion microstructure and early changes in Alzheimer disease (AD) severity as assessed by clinical diagnosis, cognitive performance, dementia severity, and plasma concentrations of neurofilament light chain.
Methods: Diffusion MRI scans were collected on cognitively normal participants (CN) and patients with early mild cognitive impairment (EMCI), late mild cognitive impairment, and AD. Free water (FW) and FW-corrected fractional anisotropy were calculated in the locus coeruleus to transentorhinal cortex tract, 4 magnocellular regions of the basal forebrain (e.
Background: Rasagiline has received attention as a potential disease-modifying therapy for Parkinson's disease (PD). Whether rasagiline is disease modifying remains in question.
Objective: The main objective of this study was to determine whether rasagiline has disease-modifying effects in PD over 1 year.
Integrating visual information for motor output is an essential process of visually-guided motor control. The brainstem is known to be a major center involved in the integration of sensory information for motor output, however, limitations of functional imaging in humans have impaired our knowledge about the individual roles of sub-nuclei within the brainstem. Thus, the bulk of our knowledge surrounding the function of the brainstem is based on anatomical and behavioral studies in non-human primates, cats, and rodents, despite studies demonstrating differences in the organization of visuomotor processing between mammals.
View Article and Find Full Text PDFfunctional and structural brain imaging of synucleinopathies in humans have provided a rich new understanding of the affected networks across the cortex and subcortex. Despite this progress, the temporal relationship between α-synuclein (α-syn) pathology and the functional and structural changes occurring in the brain is not well understood. Here, we examine the temporal relationship between locomotor ability, brain microstructure, functional brain activity, and α-syn pathology by longitudinally conducting rotarod, diffusion magnetic resonance imaging (MRI), resting-state functional MRI (fMRI), and sensory-evoked fMRI on 20 mice injected with α-syn fibrils and 20 PBS-injected mice at three timepoints (10 males and 10 females per group).
View Article and Find Full Text PDFBackground: There is a critical need to develop valid, non-invasive biomarkers for Parkinsonian syndromes. The current 17-site, international study assesses whether non-invasive diffusion MRI (dMRI) can distinguish between Parkinsonian syndromes.
Methods: We used dMRI from 1002 subjects, along with the Movement Disorders Society Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS III), to develop and validate disease-specific machine learning comparisons using 60 template regions and tracts of interest in Montreal Neurological Institute (MNI) space between Parkinson's disease (PD) and Atypical Parkinsonism (multiple system atrophy - MSA, progressive supranuclear palsy - PSP), as well as between MSA and PSP.
Background: Development of valid, non-invasive biomarkers for parkinsonian syndromes is crucially needed. We aimed to assess whether non-invasive diffusion-weighted MRI can distinguish between parkinsonian syndromes using an automated imaging approach.
Methods: We did an international study at 17 MRI centres in Austria, Germany, and the USA.
Neurite orientation dispersion and density imaging (NODDI) uses a three-compartment model to probe brain tissue microstructure, whereas free-water (FW) imaging models two-compartments. It is unknown if NODDI detects more disease-specific effects related to neurodegeneration in Parkinson's disease (PD) and atypical Parkinsonism. We acquired multi- and single-shell diffusion imaging at 3 Tesla across two sites.
View Article and Find Full Text PDFEssential tremor is a neurological syndrome of heterogeneous pathology and aetiology that is characterized by tremor primarily in the upper extremities. This tremor is commonly hypothesized to be driven by a single or multiple neural oscillator(s) within the cerebello-thalamo-cortical pathway. Several studies have found an association of blood-oxygen level-dependent (BOLD) signal in the cerebello-thalamo-cortical pathway with essential tremor, but there is behavioural evidence that also points to the possibility that the severity of tremor could be influenced by visual feedback.
View Article and Find Full Text PDF