Publications by authors named "Winston Garira"

Digital twins represent a key technology for precision health. Medical digital twins consist of computational models that represent the health state of individual patients over time, enabling optimal therapeutics and forecasting patient prognosis. Many health conditions involve the immune system, so it is crucial to include its key features when designing medical digital twins.

View Article and Find Full Text PDF

Multiscale modelling is a promising quantitative approach for studying infectious disease dynamics. This approach garners attention from both individuals who model diseases and those who plan for public health because it has great potential to contribute in expanding the understanding necessary for managing, reducing, and potentially exterminating infectious diseases. In this article, we developed a nested multiscale model of hepatitis B virus (HBV) that integrates the within-cell scale and the between-cell scale at cell level of organization of this disease system.

View Article and Find Full Text PDF

Despite the existence of a powerful theoretical foundation for the development of multiscale models of infectious disease dynamics in the form of the replication-transmission relativity theory, the majority of current modelling studies focus more on single-scale modelling. The explicit aim of this study is to change the current predominantly single-scale modelling landscape in the design of planning frameworks for the control, elimination and even eradication of infectious disease systems through the exploitation of multiscale modelling methods based on the application of the replication-transmission relativity theory. We first present a structured roadmap for the development of multiscale models of infectious disease systems.

View Article and Find Full Text PDF

Most of the progress in the development of single scale mathematical and computational models for the study of infectious disease dynamics which now span over a century is build on a body of knowledge that has been developed to address particular single scale descriptions of infectious disease dynamics based on understanding disease transmission process. Although this single scale understanding of infectious disease dynamics is now founded on a body of knowledge with a long history, dating back to over a century now, that knowledge has not yet been formalized into a scientific theory. In this article, we formalize this accumulated body of knowledge into a scientific theory called the transmission mechanism theory of disease dynamics which states that at every scale of organization of an infectious disease system, disease dynamics is determined by transmission as the main dynamic disease process.

View Article and Find Full Text PDF

During the COVID-19 pandemic, mathematical modeling of disease transmission has become a cornerstone of key state decisions. To advance the state-of-the-art host viral modeling to handle future pandemics, many scientists working on related issues assembled to discuss the topics. These discussions exposed the reproducibility crisis that leads to inability to reuse and integrate models.

View Article and Find Full Text PDF

In recent years, multiscale modelling approach has begun to receive an overwhelming appreciation as an appropriate technique to characterize the complexity of infectious disease systems. In this study, we develop an embedded multiscale model of paratuberculosis in ruminants at host level that integrates the within-host scale and the between-host. A key feature of embedded multiscale models developed at host level of organization of an infectious disease system is that the within-host scale and the between-host scale influence each other in a reciprocal (i.

View Article and Find Full Text PDF

Multiscale modelling of infectious disease systems falls within the domain of complexity science-the study of complex systems. However, what should be made clear is that current progress in multiscale modelling of infectious disease dynamics is still as yet insufficient to present it as a mature sub-discipline of complexity science. In this article we present a methodology for development of multiscale models of infectious disease systems.

View Article and Find Full Text PDF

The inability to develop multiscale models which can describe vector-borne disease systems in terms of the complete pathogen life cycle which represents multiple targets for control has hindered progress in our efforts to control, eliminate and even eradicate these multi-host infections. This is because it is currently not easy to determine precisely where and how in the life cycles of vector-borne disease systems the key constrains which are regarded as crucial in regulating pathogen population dynamics in both the vertebrate host and vector host operate. In this article, we present a general method for development of multiscale models of vector-borne disease systems which integrate the within-host and between-host scales for the two hosts (a vertebrate host and a vector host) that are implicated in vector-borne disease dynamics.

View Article and Find Full Text PDF

It is our contention that for multiscale modelling of infectious disease systems to evolve and expand in scope, it needs to be founded on a theory. Such a theory would improve our ability to describe infectious disease systems in terms of their scales and levels of organization, and their inter-relationships. In this article we present a relativistic theory for multiscale modelling of infectious disease systems, that can be considered as an extension of the relativity principle in physics, called the replication-transmission relativity theory.

View Article and Find Full Text PDF

In this paper, we share with the biomathematics community a new coupled multiscale model which has the potential to inform policy and guide malaria control and elimination. The formulation of this multiscale model is based on integrating four submodels which are: (i) a sub-model for the mosquito-to-human transmission of malaria parasite, (ii) a sub-model for the human-to-mosquito transmission of malaria parasite, (iii) a within-mosquito malaria parasite population dynamics sub-model and (iv) a within-human malaria parasite population dynamics sub-model. The integration of the four submodels is achieved by assuming that the transmission parameters of the sub-model for the mosquito-to-human transmission of malaria at the epidemiological scale are functions of the dependent variables of the within-mosquito sporozoite population dynamics while the transmission parameters of the sub-model for the human-to-mosquito transmission of malaria are functions of the dependent variables of the within-human gametocyte population dynamics.

View Article and Find Full Text PDF

The development of multiscale models of infectious disease systems is a scientific endeavour whose progress depends on advances on three main frontiers: (a) the conceptual framework frontier, (b) the mathematical technology or technical frontier, and (c) the scientific applications frontier. The objective of this primer is to introduce foundational concepts in multiscale modelling of infectious disease systems focused on these three main frontiers. On the conceptual framework frontier we propose a three-level hierarchical framework as a foundational idea which enables the discussion of the structure of multiscale models of infectious disease systems in a general way.

View Article and Find Full Text PDF

Modelling of infectious disease systems has entered a new era in which disease modellers are increasingly turning to multiscale modelling to extend traditional modelling frameworks into new application areas and to achieve higher levels of detail and accuracy in characterizing infectious disease systems. In this paper we present a categorization framework for categorizing multiscale models of infectious disease systems. The categorization framework consists of five integration frameworks and five criteria.

View Article and Find Full Text PDF

Guinea worm disease (GWD) is both a neglected tropical disease and an environmentally driven infectious disease. Environmentally driven infectious diseases remain one of the biggest health threats for human welfare in developing countries and the threat is increased by the looming danger of climate change. In this paper we present a multiscale model of GWD that integrates the within-host scale and the between-host scale.

View Article and Find Full Text PDF

In this study we develop a mathematical modelling framework for linking the within-host and between-host dynamics of infections with free-living pathogens in the environment. The resulting linked models are sometimes called immuno-epidemiological models. However, there is still no generalised framework for linking the within-host and between-host dynamics of infectious diseases.

View Article and Find Full Text PDF

A deterministic model for the co-interaction of HIV and malaria in a community is presented and rigorously analyzed. Two sub-models, namely the HIV-only and malaria-only sub-models, are considered first of all. Unlike the HIV-only sub-model, which has a globally-asymptotically stable disease-free equilibrium whenever the associated reproduction number is less than unity, the malaria-only sub-model undergoes the phenomenon of backward bifurcation, where a stable disease-free equilibrium co-exists with a stable endemic equilibrium, for a certain range of the associated reproduction number less than unity.

View Article and Find Full Text PDF

We present a mathematical model for malaria treatment and spread of drug resistance in an endemic population. The model considers treated humans that remain infectious for some time and partially immune humans who are also infectious to mosquitoes although their infectiousness is always less than their non immune counterparts. The model is formulated by considering delays in the latent periods in both mosquito and human populations and in the period within which partial immunity is lost.

View Article and Find Full Text PDF

There is currently tremendous effort being directed at developing potent, highly active antiretroviral therapies that can effectively control HIV- 1 infection without the need for continuous, lifelong use of these drugs. In the ongoing search for powerful antiretroviral agents that can affect sustained control for HIV infection, mathematical models can help in assessing both the correlates of protective immunity and the clinical role of a given drug regimen as well as in understanding the efficacy of drug therapies administered at different stages of the disease. In this study, we develop a new mathematical model of the immuno-pathogenesis of HIV-1 infection, which we use to assess virological responses to both intracellular and extracellular antiretroviral drugs.

View Article and Find Full Text PDF

This work elaborates on the effects of cytotoxic lymphocytes (CTLs) and other immune mechanisms in determining whether a TB-infected individual will develop active or latent TB. It answers one intriguing question: why do individuals infected with Mycobacterium tuberculosis (Mtb) experience different clinical outcomes? In addressing this question, we have developed a model that captures the effects of CTLs and the combined effects of CD4+ helper T cells (Th1 and Th2) immune response mechanisms to TB infection. The occurrence of active or latent infection is shown to depend on a number of factors that include effector function and levels of CTLs.

View Article and Find Full Text PDF

Treatment of human immunodeficiency virus type 1 (HIV-1) infection during the symptomatic phase has significantly improved patient survival. We present a two-strain HIV mathematical model that captures the dynamics of the immune system and two HIV-1 variants under antiretroviral therapy. We explore the effects of chemotherapy on the dynamics of two viral strains and T lymphocytes with one mutant strain phenotypically resistant to drug effects.

View Article and Find Full Text PDF