Macrophages are widely recognized in modulating the foreign body response, and the manner in which they do so largely depends on their activation state, often referred to as their polarization. This preliminary study demonstrates that surface immobilized α-1 acid glycoprotein (AGP), as well as collagen VI (Col6) in conjunction with AGP, can direct macrophages towards the M2 polarization state in vitro and modify the foreign body response in vivo. AGP and Col6 are immobilized onto poly(2-hydroxyethyl methacrylate) (pHEMA) surfaces using carbonyl diimidazole chemistry.
View Article and Find Full Text PDFEncrustation of implanted urinary tract devices is associated with significant morbidity. Pellethane is a polyether-based compound noted for its strength, porosity, and resistance to solvents. We assessed Pellethane thermoplastic polyurethane (TPU) with and without surface coatings 2-hydroxyethyl methacrylate (HEMA) and tetraethylene glycol dimethyl ether (TETRA) for the potential to resist encrustation in an artificial urine environment.
View Article and Find Full Text PDFUnlabelled: Surface-induced thrombosis is still a significant clinical concern for many types of blood-contacting medical devices. In particular, protein adsorption and platelet adhesion are important events due to their ability to trigger the coagulation cascade and initiate thrombosis. Poly(lactic acid) (PLA) has been the predominant polymer used for making bioresorbable stents.
View Article and Find Full Text PDFAn ideal surface for implantable glucose sensors would be able to evade the events leading to chronic inflammation and fibrosis, thereby extending its utility in an in vivo environment. Nafion™, a perfluorinated ionomer, is the membrane material preferred for in situ glucose sensors. Unfortunately, the surface properties of Nafion™ promote random protein adsorption and eventual foreign body encapsulation, thus leading to loss of glucose signal over time.
View Article and Find Full Text PDFNafion is the membrane material preferred for in situ glucose sensors. Unfortunately, surface properties of Nafion promote random protein adsorption and eventual foreign body encapsulation thus leading to loss of glucose signal over time. Here we detail surface modifications made by RF plasma deposition to Nafion with the intent to prevent random protein adsorption while providing enough functional sites (hydroxyl groups) to bind a biologically active peptide known to induce cellular adhesion (YRGDS).
View Article and Find Full Text PDF