Filamentous fungi are known to secrete biochemicals that drive the synthesis of nanoparticles (NPs) that vary in composition, size, and shape; a process deemed mycosynthesis. Following the introduction of precursor salts directly to the fungal mycelia or their exudates, mycosynthesis proceeds at ambient temperature and pressure, and near neutral pH, presenting significant energy and cost savings over traditional chemical or physical approaches. The mycosynthesis of zinc oxide (ZnO) NPs by various fungi exhibited a species dependent morphological preference for the resulting NPs, suggesting that key differences in the biochemical makeup of their individual exudates may regulate the controlled nucleation and growth of these different morphologies.
View Article and Find Full Text PDFGraphite IG-110 is a synthetic polycrystalline material used as a neutron moderator in reactors. Graphite is inherently brittle and is known to exhibit a further increase in brittleness due to radiation damage at room temperature. To understand the irradiation effects on pre-existing defects and their overall influence on external load, micropillar compression tests were performed using in situ nanoindentation in the Transmission Electron Microscopy (TEM) for both pristine and ion-irradiated samples.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2017
The electrochemical performance of anodes made of transition metal oxides (TMOs) in lithium-ion batteries (LIBs) often suffers from their chemical and mechanical instability. In this research, a novel electrode with a hierarchical current collector for TMO active materials is successfully fabricated. It consists of porous nickel as current collector on a copper substrate.
View Article and Find Full Text PDFThe conversion of oxygen-rich biomass into hydrocarbon fuels requires efficient hydrodeoxygenation catalysts during the upgrading process. However, traditionally prepared CoMoS catalysts, although efficient for hydrodesulfurization, are not appropriate due to their poor activity, sulfur loss and rapid deactivation at elevated temperature. Here, we report the synthesis of MoS monolayer sheets decorated with isolated Co atoms that bond covalently to sulfur vacancies on the basal planes that, when compared with conventionally prepared samples, exhibit superior activity, selectivity and stability for the hydrodeoxygenation of 4-methylphenol to toluene.
View Article and Find Full Text PDFIncorporation of Zn atoms into a nanosize Cu lattice is known to alter the electronic properties of Cu, improving catalytic performance in a number of industrially important reactions. However the structural influence of Zn on the Cu phase is not well studied. Here, we show that Cu nano-clusters modified with increasing concentration of Zn, derived from ZnO support doped with Ga(3+), can dramatically enhance their stability against metal sintering.
View Article and Find Full Text PDFLindlar catalysts comprising of palladium/calcium carbonate modified with lead acetate and quinoline are widely employed industrially for the partial hydrogenation of alkynes. However, their use is restricted, particularly for food, cosmetic and drug manufacture, due to the extremely toxic nature of lead, and the risk of its leaching from catalyst surface. In addition, the catalysts also exhibit poor selectivities in a number of cases.
View Article and Find Full Text PDF