Cellular RNA is asymmetrically distributed in cells and the regulation of RNA localization is crucial for proper cellular functions. However, limited chemical tools are available to capture dynamic RNA localization in complex biological systems with high spatiotemporal resolution. Here, we developed a new method for RNA proximity labeling activated by near-infrared (NIR) light, which holds the potential for deep penetration.
View Article and Find Full Text PDFObjectives: To evaluate the inhibitory effect of a novel mussel-inspired monomer (N-(3,4-dihydroxyphenethyl)methacrylamide (DMA) on the soluble and matrix-bound proteases.
Methods: The inhibitory effect of DMA (0, 1, 5, and 10 mM) and 1 mM chlorhexidine (CHX) dissolved in 50% ethanol/water on soluble recombinant human matrix metalloproteinases (rhMMP-2, -8, and -9), as well as cysteine cathepsins (B and K) were evaluated using both fluorometric assay kits and molecular docking. The effect of CHX and DMA on matrix-bound proteases was examined by in situ zymography, and the fluorescence intensity and relative area were calculated by Image J software.